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Abstract. Descent theory (a modern formulation of Fermat’s
classical method of infinite descent) is a powerful tool in arithmetic
geometry. In this article, we reinterpret descent theory through
the lens of quotient stacks and apply it in the setting where it first
arose: the Diophantine study of generalized Fermat equations

(1) Axa +Byb + Czc = 0.

We focus on understanding the arithmetic of the stacks that arise
from the study of primitive integral solutions to Equation (1),
rather than on solving any particular instance of the equation.
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1. Introduction

1.1. The framework of Poonen–Schaefer–Stoll. Poonen, Schae-
fer, and Stoll [PSS07, Theorem 1.1] provably computed the finite set
of primitive integral solutions of the generalized Fermat equation

(2) F : x2 + y3 + z7 = 0.

(Recall that (x, y, z) ∈ Z3 is called primitive when gcd(x, y, z) = 1.)
If U is the punctured cone associated to F ⊂ A3

Z (i.e., the subscheme
obtained by deleting {x = y = z = 0} to F ), then U(Z) is identified with
the set of primitive integral solutions to Equation (2). A preliminary
step in their method is to consider the quotient stack [U/Gm], where
the multiplicative group Gm acts by

(x, y, z) · λ := (λ21x, λ14y, λ6z).

After inverting the bad primes S = {2, 3, 7}, the stack [U/Gm] becomes
isomorphic to the stack P1(2, 3, 7); this is the projective line P1

Z rooted
1
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at the irreducible horizontal divisors 0, 1, and ∞ with multiplicities
2, 3, and 7, respectively.

(3) [U/Gm]Z[1/42] ∼= P1(2, 3, 7)Z[1/42].

After this preliminary result, the first step in the method is to find a
geometrically Galois Belyi map ϕ : X → P1, with ramification indices
2, 3, 7 above 0, 1,∞. To find U(Z), it is enough to calculate the sets
of rational points on the curves Xτ for an explicit finite set of twists
ϕτ : Xτ → P1 of the map ϕ : X → P1. Our interpretation of the method
of [PSS07, Section 3] tersely summarized here is henceforth referred to
as Fermat descent.

1.2. Our main theorem. To generalize the method of Fermat descent
to arbitrary generalized Fermat equations

(4) F : Axa +Byb + Czd = 0,

one must start by finding the correct analog of the isomorphism (3).
This is our main contribution.

Let S be set of primes dividing the integer a · b · c · A · B · C ̸= 0,
and denote by R the ring of S-integers. Let U be the punctured cone
associated to Equation (4). Let H be the subgroup of G3

m given on
points by those (λ0, λ1, λ∞) such that λa0 = λb1 = λc∞. The group H
visibly acts on U by coordinate-wise multiplication

(x, y, z) · (λ0, λ1, λ∞) := (λ0x, λ1y, λ∞z).

Finally, let P1(a, b, c) denote the iterated root stack of P1
Z at the divisors

0, 1,∞ with multiplicities a, b, c. This is the stacky version of Darmon’s
M -curve P1

a,b,c [Dar97, p. 4] (see Figure 1).

Theorem 1.1. The map

(5) j : UR → P1
R, (x, y, z) 7→ (−Axa : Czc)

induces an isomorphism [UR/HR] ∼= P1(a, b, c)R.

�

Warning 1.2. For a general triple (a, b, c) of positive integers, the
group H is not isomorphic to Gm. We show in Lemma 4.3 that this is
only the case when gcd(bc, ab, ac) = 1. For example, in the important
case of (a, b, c) = (p, p, p) for some prime p, the group scheme H is
isomorphic to Gm × µp × µp.

To further motivate the method of Fermat descent and introduce
notation, we revisit the one of the very first instances of the method of
infinite descent from this point of view.
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Figure 1. The Belyi stack of signature (a, b, c).

1.3. Fermat’s last theorem for n = 4. The term infinite descent
was coined in a letter from Fermat to Carcavi:

And because the ordinary methods found in the books
were insufficient to prove such difficult propositions, I
finally discovered a completely novel path to reach them.
I called this method of proof infinite or indefinite descent,
etc.; at first, I used it only to prove negative propositions,
such as, for example:

...
That there is no right triangle with integer sides whose
area is a square number.

Fermat, 1659
Fermat actually proved the claim above (see [Dic66, Chapter XXII, p.
615]). Closely related to this problem is his famous “Last Theorem”
in the case of exponent n = 4. In his controversial marginal notes
to the Arithmetica of Diophantus, Fermat states that “the sum of two
biquadrates is never a biquadrate or a square.” (Excellent expositions
of the proofs of these results via infinite descent are given in [Cona,
Conb].)

At first glance, the method of infinite descent appears to be a simple
reversed form of the principle of mathematical induction. In fact, it
is much deeper. We present an overly complicated proof of Fermat’s
last theorem for exponent n = 4 using the method of Femat descent

https://rcin.org.pl/impan/dlibra/publication/198805/edition/180222/content
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with the objective of illustrating the hidden geometry and introducing
notation. The foreign definitions and constructions presented here will
be introduced later on.

Fermat’s last theorem for exponent n = 4 follows from the following
stronger statement.

Theorem 1.3 (Fermat). The primitive integral solutions (x, y, z) to
the generalized Fermat equation F : x4+ y4− z2 = 0 satisfy x · y · z = 0.
They are the eight triples

±(1, 0, 1),±(1, 0,−1),±(0, 1, 1),±(0, 1,−1).

Proof sketch. Let U be the punctured cone associated to F . Our goal
is to show that U(Z) contains only the eight elements listed above.
The group scheme H defined above the statement of Theorem 1.1 (and
discussed in detail in Section 4.1) acts on U by coordinate-wise multi-
plication, and it is not hard to see there are non-trivial stabilizers. For
instance, the Q̄-points can be described explicitly as

H(Q̄) =
{
(ξ0λ, ξ1λ, ξ∞λ

2) : λ ∈ Q̄×, ξ0, ξ1 ∈ µ2(Q̄), ξ∞ ∈ µ4(Q̄)
}
.

From this description, we see that any point (x, y, z) ∈ U(Q̄) with
x = 0, y = 0, or z = 0 has µ2(Q̄), µ2(Q̄), or µ4(Q̄) stabilizers in
H(Q̄), respectively. On the other hand, any point (x, y, z) ∈ U(Q̄) with
x · y · z ̸= 0 has no non-trivial stabilizers.

The idea is to understand the arithmetic of U by studying instead
the arithmetic of the stack quotient [U/H].
Remark 1.4 (Notation). If X is a stack and R is a ring, we denote by
X(R) the groupoid of R-points, and by X⟨R⟩ the set of R-points, (see
Section 2.1).

Descent theory (see Theorem 2.16) gives the partition

(6) [U/H]⟨Z⟩ =
⊔

δ∈H1(Z,H)

Uδ(Z)/H(Z) ⊃ U(Z)/H(Z),

where the (fppf) cohomology group H1(Z,H) is finite, and the Uδ are
certain twists of U arising from generalized Fermat equations Fδ.

Remark 1.5. The group H is not the only (fppf) group scheme acting
on U . For instance, one can also consider the image Gm(1, 1, 2) of
the map Gm → G3

m : λ 7→ (λ, λ, λ2). The quotient [U/Gm(1, 1, 2)] has
the technical advantage of being a closed substack of the weighted
projective stack P(1, 1, 2). The reason for choosing H over Gm(1, 1, 2)
will become clear shortly.
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Step 0: In this case, p = 2 is the only bad prime, so S = {2} and we
abbreviate R = Z[1/2]. From Theorem 1.1, we have an isomorphism
of stacks

(7) [UR/HR] ∼= P1(4, 4, 2)R.

The notable consequence of this isomorphism is that, by the defi-
nition of the Belyi stack P1(4, 4, 2), geometrically Galois Belyi maps
ϕ : X → P1

Q with signature (4, 4, 2) factor through étale covers ϕ : X →
P1(4, 4, 2)Q, and thus we learn new information about U(Z) by studying
the sets of rational points X(Q) arising from such maps.

Step 1: (Covering) The first task of the method of Fermat descent
is to find a geometrically Galois Belyi map ϕ of signature (4, 4, 2) with
good reduction outside of S = {2} (see Definition 3.19). The LMFDB
(beta) [LMF25b] gave us the elliptic curve EQ : v

2w = u3 − uw2 ⊂ P2
Q

defined over Q with j-invariant 1728 and the map

(8) ϕ : EQ → P1
Q, (u : v : w) 7→ (u2 : u2 − w2).

The same equations define an R-model Φ: E → P1
R. Let Aut(Φ) be

the automorphism R-group scheme over of Φ. In this situation, we
have an isomorphism

(9) P1(4, 4, 2)R ∼= [E/Aut(Φ)].

Step 2: (Twisting) It turns out that Aut(Φ) = Aut(E). In addi-
tion, Aut(E) ∼= µ4 = SpecR[t]/⟨t4 − 1⟩ by [Sil09, Corollary III.10.2].
By Kummer theory, we know that the cohomology group H1(R, µ4) is
isomorphic to the finite group R×/(R×)4 ∼= {±1,±2,±4,±8}. Once
again, descent theory gives a partition

[E/Aut(Φ)]⟨R⟩ =
⊔

τ∈H1(R,µ4)

ϕτ (Eτ (R)) =
⊔

d∈R×/(R×)4

ϕd(Ed(Q)).

The last equality follows because the twists Ed are all proper and thus
Ed(R) = Ed(Q) by the valuative criterion.

The final remaining task in this step is to calculate the quartic twists
Φd : Ed → P1

R (see Section 2.3). By recalling that µ4 acts on the elliptic
surface E : v2 = u3 − u via

(u, v) · ζ := (ζ2u, ζ3v),

and that for each d ∈ H1(R, µ4) the corresponding (left fppf) µ4-torsor
is Td := SpecR[t]/⟨t4 − d⟩ → SpecR with action

ζ · 4
√
d := ζ

4
√
d,

https://beta.lmfdb.org/Belyi/4T1/4/4/2.2/a/
https://beta.lmfdb.org/Belyi/4T1/4/4/2.2/a/
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an invariant calculation gives that Ed : v2w = u3 − duw2 ⊂ P2
R and

(10) Φd : Ed → P1
R, (u : v : w) 7→ (u2 : u2 − dw2).

This coincides with the Galois cohomology perspective in [Sil09, Propo-
sition X.5.4]. Indeed, it turns out that H1(R,Aut(Φ)) is isomorphic
to the Galois cohomology group H1

{2}(Q, µ4(Q̄)) parametrizing isomor-
phism classes of Galois étale Q-algebras unramified outside {2}, and
with Galois group C4 = µ4(Q̄).

Step 3: (Sieving) To summarize, we have shown that the set j(U(Z))
is contained in

j(U(R)) ⊂
⊔

d∈R×/(R×)4

ϕd(Ed(Q)).

Our objective now is to sieve out the points in U(R) that are not in
U(Z). The best case scenario here would be that the sets Ed(Q) are
finite and that ϕd(Ed(Q)) are contained in {0, 1,∞} ⊂ P1(Q). Indeed,
this would imply that j(U(Z)) ⊂ {0, 1,∞}, which can easily be seen
to imply Theorem 1.3. Unfortunately, this is not the case: the elliptic
curves E2 and E−8 (with LMFDB labels 256.b1 and 256.b2) have
infinitely many Q-rational points. We are forced to take a closer look
at the rational points on the projective line arising from U(Z) and
Ed(Q) simultaneously.

For any choice of d ∈ {±1,±2,±4,±8}, let us consider a point Q in
the intersection j(U(Z)) ∩ ϕd(Ed(Q)) ⊂ P1(Q), so

Q = (x4 : z2) = (u2 : u2 − dw2)

for some primitive integral solution (x, y, z) to x4 + y4 = z2, and some
rational point P = (u : v : w) ∈ Ed(Q). Note that if Q = 0, P ∈ Ed(Q)
is the point at infinity and (x, y, z) = ±(0, 1, 1),±(0, 1,−1). We assume
that P ̸= (0 : 1 : 0). It follows that there is some λ ∈ Z>1 such that
x4 = λ2u2, and z2 = λ2(u2 − d). Moreover, y4 = z2 − x4 = −λ2d. But
this forces d ∈ {−1,−4}. Fortunately, both E−1(Q) and E−4(Q) are
finite (see 64.a4, 32.a4), and a calculation gives:

ϕ−1(E−1(Q)) = {1,∞} ,
ϕ−4(E−4(Q)) = {1,∞, (1 : 2)} .

The points Q = 1,∞ are the expected ones, and the point Q = (1 : 2)
is ruled out by the same arguments above: x4 = λ2 and y4 = 4λ2 imply
that λ2 = 1 by primitivity, and 4 is not a fourth power. □

https://www.lmfdb.org/EllipticCurve/Q/256.b1
https://www.lmfdb.org/EllipticCurve/Q/256.b2
https://www.lmfdb.org/EllipticCurve/Q/64.a4
https://www.lmfdb.org/EllipticCurve/Q/32.a4
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1.4. Summary of contributions. This article contributes a thorough
exposition of the stack-theoretic approach to the Diophantine study
of generalized Fermat equations, complemented by a number of new
results. The stack-theoretic perspective offers the distinct advantage
of being more conceptual, and we expect it will prove useful to tackle
numerous open problems in this area (see [Ara25].)
• In Section 2, we provide a concise review of quotient stacks and

use it to present the fundamentals of descent theory, in the sense of
[Sko01, Chapter 2], from this vantage point. The main result of this
section is Theorem 2.16, the descent theory partition. It is stated in
greater generality in [San22b, Lemma 2.4]. While this is certainly
well known, we find our proof to be succinct and illuminating.

• In Section 3, we begin by reviewing the root stack construction, which
is due to Cadman [Cad07]. Our exposition borrows from Olsson’s
treatment in [Ols16, Section 10.3]. The purpose of this review is to
understand the arithmetic of the Belyi stack P1(a, b, c), which pro-
vides the stack-theoretic interpretation of Darmon’s M -curve P1

a,b,c

[Dar97, p. 4]. It is well known to experts that Darmon’s M -curves
can be interpreted as root stacks over their coarse moduli spaces.
This perspective is hinted at by Poonen in [Poo06], and addressed
more directly by Santens in this MathOverflow post [San22a] and
[San22b, Lemma 2.1]. In turn, this is an instance of a general fea-
ture of Deligne–Mumford stacks [GS17]. The main result of this
section is Lemma 3.14, which explicitly characterizes the PID points
on a Belyi stack.

• In Section 4, we prove our main result: Theorem 4.6. In spirit, this
theorem captures a striking connection between:

– Arithmetic: the Diophantine equations Axa +Byb + Czc = 0.
– Geometry: the Riemann sphere CP1 with orbifold points at
(0, 1,∞) of multiplicities (a, b, c).

This connection was already identified by [DG95], and formulated
in terms of stacks by [Poo06], [PSS07], [VZB22, Example 5.4.7],
and [Poo23]. The originality of our contribution lies in Section 4.1,
where we work out the combinatorics of the general case, when
gcd(bc, ac, ab) is possibly greater than one.

Acknowledgements. This work is part of the author’s PhD thesis.
We thank David Zureick-Brown, John Voight, and Andrew Kobin for
many enlightening conversations on this topic and for their valuable
feedback. We are grateful to Bjorn Poonen for serving on the thesis
committee and for his detailed and insightful comments on an earlier
draft.

https://mathoverflow.net/questions/390541/relation-between-stacky-curves-and-m-curves
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2. Quotient stacks and descent

2.1. Conventions on stacks. Recall that a morphism of schemes is
fppf if it is faithfully flat and locally of finite presentation (see [Poo17,
Definition 3.4.1]). For a choice of base scheme S, we work on the big
fppf site Sfppf = (Sch/S)fppf. This is the category Sch/S of schemes over
S where the open coverings are families {Ui → U} of S-morphisms such
that

⊔
i Ui → U is fppf.

Definition 2.1. A category over S is a pair (X, p) where X is a category
and p: X ⇝ Sch/S is a functor. A morphism f : y → z in X is called
cartesian if given any morphism g : x → z and a factorization p(f) ◦
ϕ : p(x) → p(y) → p(z) of p(g), there exists a unique morphism h : x→
y such that p(h) = ϕ and g = h ◦ f .

(11)
X x y z

Sch/S p(x) p(y) p(z)

p

h

g

f

ϕ p(f)

Definition 2.2. Let (X, p) be a category over S. If f : y → z is a
cartesian morphism, the object y ∈ X is called a pullback of z along
p(f). Given an S-scheme U , the category of U -points in X, denoted
X(U), is the category of pullbacks over the identity. That is,

Objects: objects u in X such that p(u) = U .
Morphisms: morphisms ϕ : v → u in X such that p(ϕ) = idU .

Definition 2.3. A fibered category over S is a category (X, p) over S
such that for every S-morphism of schemes Φ: V → U and u in X(U),
there exists a cartesian morphism ϕ : v → u such that p(ϕ) = Φ. In
particular, this implies that v is in X(V ).

Fibered categories over S assemble into a 2-category (see [Ols16,
Definition 3.1.3]). Indeed, there are natural notions of (i) morphisms
between fibered categories over S, and (ii) morphisms between mor-
phisms of fibered categories over S. Moreover, there is a version of the
Yoneda lemma (see [Ols16, Chapter 3.2]) in this context that justifies
calling U 7→ X(U) a “functor” of points.

Definition 2.4. Recall that a groupoid is a category in which every
morphism is an isomorphism. A category fibered in groupoids over S
if a fibered category X over S, such that for every S-scheme U , the
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category X(U) is a groupoid. Given a category fibered in groupoids X

over S and an S-scheme U , we denote by X⟨U⟩ the set of isomorphism
classes of the groupoid X(U).

Since our focus will be on the arithmetic of stacks, thinking about
stacks in terms of their groupoids/sets of U -points will be enough for
most of our applications. When we use the word stack, we mean an
algebraic stack in the following sense.

Definition 2.5. Let X be a category fibered in groupoids over S.
(i) X is a stack if for every fppf cover {Ui → U}, the induced descent

functor X(U) → X({Ui → U}) is an equivalence of categories.
See [Ols16, Section 4.2.4].

(ii) A stack X is algebraic if the diagonal ∆: X → X ×S X is repre-
sentable by an algebraic space, and X admits a smooth surjection
X ′ → X from an S-scheme X ′. The map X ′ → X is called a
smooth presentation of X. See [Ols16, Section 8.1].

(iii) An algebraic stack X is Deligne–Mumford if the smooth presenta-
tion above is in fact étale. See [Ols16, Section 8.3].

2.2. Review of quotient stacks. We focus on an concrete kind of
stacks that arise from groups acting on schemes.

Situation 2.6. We place ourselves in the following situation for the
rest of Section 2.2.
• Let S be a fixed base a scheme.
• Let Z be a scheme over S.
• Let G be an fppf S-group scheme.
• Suppose that we have Z ×S G→ Z a right action of G over S.
• We abbreviate H1(S,G) = Ȟ1

fppf(S,G) for the Čech cohomology set
on the big fppf site of S, as in [Poo17, Section 6.4.4].

Definition 2.7 (Torsor scheme). Let G→ S be an fppf group scheme.
A right fppf G-torsor over S is an S-scheme T → S together with a
right action T ×S G→ T such that the following conditions hold:

(1) T → S is fppf.
(2) The map T ×S G → T ×S T defined by (t, g) 7→ (t, t · g) is an

isomorphism.
A morphism of G-torsors is a G-equivariant morphism of S-schemes.

An obvious yet important example is the trivial G-torsor. This is
the fppf scheme G → S itself, with the right G-action given by the
multiplication law. In fact, all G-torsors are locally trivial.
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Lemma 2.8. Let T → S be an S-scheme, equipped with a G-action
T ×S G → T satisfying Item 2 in Definition 2.7. The following condi-
tions are equivalent.

(a) T → S is fppf.
(b) T → S is fppf locally isomorphic to the trivial G-torsor.
(c) T → S admits a section fppf locally.

If we care about understanding group actions (i.e., quotients), we
must leave the world of schemes. For many interesting examples, the
sheafification of U 7→ Z(U)/G(U) is not representable by a scheme.
Quotient stacks elegantly and succinctly solve this problem in terms of
torsors.

Definition 2.9 (Quotient stack). Define the quotient stack of Z by G,
denoted [Z/G], to be the algebraic stack over Sfppf with:
Objects: triples (U, T, ϕ)

T Z

U

S

GU -torsor
ϕ

G-equivariant

where
(i) U is an S-scheme,
(ii) T → U is a right fppf GU -torsor, and
(iii) ϕ : T → Z is a G-equivariant S-morphism.

Morphisms: (U ′, T ′, ϕ′) → (U, T, ϕ) are pairs (f, h), where
(iv) f : U ′ → U is an S-morphism of schemes, and
(v) h : T ′ → T is a G-equivariant morphism over f inducing an

isomorphism of GU ′-torsors T ′ ∼= T×f,U U
′, such that ϕ′ = ϕ◦h.

(12)

T ′ T

U ′ U X

S

h

ϕ

f ϕ′

In particular, for any given S-scheme U , the groupoid [Z/G](U)
consists of pairs (T, ϕ) with T → U a GU -torsor, and ϕ : T → Z a
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G-equivariant S-morphism; and isomorphisms h : (T1, ϕ1) → (T2, ϕ2)
are simply isomorphisms h : T1 → T2 of GU -torsors, compatible with
the maps to Z.

(13)

T1 T2

U Z

S

h

ϕ2

ϕ1

2.3. Descent theory revisited. In this section, we summarize the
basics of descent theory from the point of view of quotient stacks.
We follow Skorobogatov’s book [Sko01, Section 2.2], but with inverted
handedness. We place ourselves in the following situation until the end
of Section 2.3.

Situation 2.10. Suppose we are in Situation 2.6.
• Assume that Z is quasi-projective.
• Let T denote an S-scheme with a left G action over S.
• Let q : Z → [Z/G] be the natural projection map.
• The structure map G→ S is affine, and S is locally noetherian.

Remark 2.11. The last assumption ensures that there is a bijective
correspondence between H1(S,G) and isomorphism classes of G-torsor
schemes, as a consequence of [Poo17, Theorem 6.5.10].

Remark 2.12. It is possible to work in greater generality (see [San22b,
Section 2.5]) if we are not concerned with representability. In general,
the contracted product of an S scheme Z with a left G-torsor will be
an algebraic space.

Recall that when G is not commutative, H1(S,G) is only a pointed
set (the distinguished element corresponds to the class of the trivial
G-torsor) and not an abelian group. Nevertheless, we can still perform
certain algebraic operations in this pointed set in terms of correspond-
ing geometric operations on torsors.

Definition 2.13 (Contracted product). The contracted product Z×
G

T
is defined as the quotient stack [Z×S T/G], where G acts on the right
on Z ×S T via

(z, t) · g := (z · g, g−1 · t).
A crucial application of this definition is the pushforward operation

on torsors. Given φ : G → H a homomorphism of fppf group schemes
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over S, we consider the left action of G on H. If P → S is a G-torsor,
the contracted product

φ∗P := P×
G

H, where (p, h) · g := (p · g, φ(g)−1 · h),
turns out to be an H-torsor, called the pushforward of P by φ. As
an application of this construction, we have the following lemma (see
[Ols16, Exercise 10.F]).

Lemma 2.14 (Induced maps on quotient stacks). Let S be a scheme,
and φ : G → H a homomorphism of fppf group schemes over S. Let
X be an S-scheme with a right G-action, and Y and S-scheme with a
right H-action. Suppose that there is an S-morphism f : X → Y that
is compatible with the group actions. Then, f induces a morphism of
algebraic stacks f̄ : [X/G] → [Y/H].

Proof sketch. Let U → S be an S-scheme. At the level of U -points, the
functor f̄(U) : [X/G](U) → [Y/H](U) is defined in the following way.
Recall that a U -point on [X/G] is a triple (U, T, ϕ) as in Definition 2.9.
First, consider the pullback φU : GU → HU . Pushing forward the GU -
torsor T via φU gives a triple (U, (φU)∗T, (φU)∗(f ◦ ϕ)).

T X (φU)∗T Y

U [X/G] U [Y/H]

ϕ

□

The following lemma is a restatement of [Poo17, Section 6.5.6].

Lemma 2.15 (Twisting by fppf descent). Given τ ∈ H1(S,G), let
T → S be a left fppf G-torsor corresponding to τ . Then:

(i) The contracted product Z×
G

T is represented by a quasi-projective
S-scheme Zτ . We call this the twist of Z by τ .

(ii) If T = G is the trivial left G-torsor, then Zτ ∼= Z as S-schemes
with a right G-action.

(iii) Taking Z = G acting on itself by conjugation, the twist Zτ = Gτ

is an affine fppf group scheme over S. It is called the inner twist
of G by τ .

(iv) The twist Zτ is a right fppf Gτ -torsor over S. Moreover, there
is an isomorphism [Z/G] ∼= [Zτ/Gτ ]. In particular, there is an
induced map qτ : Zτ → [Z/G], called the twist of q by τ .
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(v) The S-scheme T is a (G,Gτ )-bitorsor. The same S-scheme with
the inverse G action t · g := g−1 · t is a (Gτ , G)-bitorsor. We
denote inverse (right) G-torsor by T−1.

(vi) Finally, the contracted product T−1×
G

T is isomorphic to the trivial
G-torsor.

Proof. (i) The representability of Zτ = Z×
G

T is an application of fppf
descent. See [Sko01, Lemma 2.2.3] for a proof when Z is affine.

(ii) We have the morphism Z ×S G → Z ×S Z given by (z, g) 7→
(z, z · g). Observe that it is G-equivariant for the twisted action on
Z ×S G, and the action (z1, z2) · g := (z1 · g, z2) on Z ×S Z. This
gives a morphism of quotient stacks Zτ = [Z ×S G/G] → [Z ×S Z/G].
Since the first projection Z ×S Z → Z is G-equivariant for the trivial
G-action on Z, we get a map ψ : Zτ → Z. On the other hand, we have
a morphism ϕ : Z → Zτ induced by Z → Z ×S G. To see that these
are mutual inverses, it is enough to realize that the following diagram
is commutative

Z

Z ×S G Zτ

Z ×S Z Z.

ϕ

ψ

pr1

(iii) Since G→ S is affine, the same will be true for Gτ → S by fppf
descent. Checking that Gτ is an S-group is a matter of pulling back
the group operations to T and verifying that they are G-equivariant
under the twisted action. For example, consider the inverse morphism
ι : G → G pulled back to ι ×S T : G ×S T → G ×S T . Then, we have
that (g, t) · h = (h−1gh, h−1t) maps to (h−1g−1h, h−1t) = (g−1, t) · h.
We obtain the twisted inverse morphism Gτ → Gτ by passing to the
quotient.

(iv) Consider the morphism ϕ : (Z ×S T ) ×S (G ×S T ) → Z ×S T
given on points by (z, x, g, t) 7→ (z · g, t). Note that (z, x, g, t) · h =
(z · h, h−1x, h−1gh, h−1t) maps to (z · gh, h−1t) = (z · g, t) · h, so ϕ
induces a morphism Zτ ×S Gτ → Zτ . One similarly verifies the G-
equivariance of the diagrams that descend to the group action axioms
on Zτ ×S Gτ → Zτ . For the third statement, note that we have a
morphism Z ×S T → Z compatible with φ : Gτ → G, namely the first
projection (z, t) 7→ z. From Lemma 2.14, we get a map [Zτ/Gτ ] →
[Z/G] is the induced map of quotient stacks. This map is in fact as an
isomorphism. We obtain qτ as the composition Zτ → [Zτ/Gτ ] ∼= [Z/G].
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(v) Follows directly from (iv).
(vi) This is a particular instance of the general fact that Z×[Z/G]Z ∼=

Z×SG. Indeed, taking Z = T−1×S T shows that Zτ has a section fppf
locally, implying that it is the trivial G-torsor by Lemma 2.8. □

In general, the sets [Z/G]⟨S⟩ and Z(S)/G(S) are not the same. Nev-
ertheless, the former is contained in the latter, and the difference is
accounted for by the quotients Zτ (S)/G(S) as τ ranges over H1(S,G).

Theorem 2.16 (Descent theory partition). The set of S-points on the
quotient stack [Z/G] is partitioned by the images of the S-points of the
twists of q : Z → [Z/G].

[Z/G]⟨S⟩ =
⊔

τ∈H1(S,G)

qτ (Zτ (S)).

Proof. Recall that a map S → [Z/G] is the data of a triple (S, T−1, ϕ)
where T−1 is a right fppf G-torsor over S, and ϕ : T−1 → Z is a
G-equivariant map of S-schemes. We want to show that every map
(T−1, ϕ) : S → [Z/G] factors through a twist qτ : Zτ → [Z/G] of the
canonical quotient q : Z → [Z/G], where τ is completely determined by
the isomorphism class of the point (T, ϕ). Indeed, in this setting, we
have the evaluation map ζ : (T−1, ϕ) 7→ τ := [T → S] from [Z/G]⟨S⟩
to H1(S,G), where τ is the cohomology class corresponding to the left

G-torsor T → S. Since T−1×
G

T is isomorphic to the trivial G-torsor,
we have a section e : S → G ∼= T−1×

G
T that realizes the factorization

of our map (T−1, ϕ) by the commutativity of the diagram in Figure 2.

The map T−1×
G

T → Zτ is the one induced by the G-equivariant S-
morphism ϕ×S idT : T

−1 ×S T → Z ×S T . □

T−1×
G
T Zτ

T−1 Z

S [Z/G] [Zτ/Gτ ]

ϕ×
G

idT

qτ
ϕ

q

e

Figure 2. Proof of the method of descent.

As a reality check, let us calculate the set of R-points on the projec-
tive line over a principal ideal domain R using Theorem 2.16.
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Example 2.17 (PID points on the projective line). Recall the greatest
common divisor of two elements s, t in R is a generator of the ideal
sR+tR. Let V := A2−0, so that V(R) ∼= {(s, t) ∈ R2 : sR + tR = R}.
We have that P1(R) ∼= {(s, t) ∈ R2 : sR + tR = R} /R×. One can see
this using the fact that P1 is the quotient stack [V/Gm]. Indeed, since
PicR is trivial,

P1(R) = [V/Gm]⟨R⟩ =
⊔

τ∈H1(R,Gm)

Vτ (R)/Gm(R) = V(R)/R×.

Indeed, a point Q ∈ P1(R) is (isomorphic to a) cartesian square

Gm V

SpecR P1,

ϕ

where ϕ is a Gm-equivariant map. Composing the identity section
e : SpecR → Gm with ϕ we obtain a point in V(R), i.e., a pair (s, t) ∈
R2 such that sR + tR = R. Any other isomorphic square comes from
a Gm-equivariant map ϕ′ : Gm → V giving rise to a point (s′, t′) such
that (s′, t′) = (us, ut) for some u ∈ R×.

3. Root stacks and the Belyi stack

3.1. Review of the root stack construction. An effective Cartier
divisor on a scheme X is a closed subscheme D ⊂ X such that the
corresponding ideal sheaf OX(−D) is a line bundle [Sta24, Tag 01WR].
Equivalently, a closed subscheme is an effective Cartier divisor if and
only if it is locally cut out by a single element which is a nonzero
divisor [Sta24, Tag 01WS]. Denote by jD : OX(−D) ↪→ OX the natural
inclusion morphism of OX-modules.

Definition 3.1 ([Ols16, Definition 10.3.2]). A generalized effective Car-
tier divisor on a scheme X is a pair (L, ρ), where L is a line bundle on
X, and ρ : L → OX is a morphism of OX-modules. An isomorphism
of generalized Cartier divisors (L′, ρ′) ∼= (L, ρ) is an isomorphism of line
bundles σ : L′ → L such that the following triangle commutes

L′ L

OX .

σ

ρ′ ρ

We can multiply generalized effective Cartier divisors (L, ρ) and (L′, ρ′)
by declaring (L, ρ) · (L′, ρ′) := (L ⊗OX

L′, ρ ⊗ ρ′), where ρ ⊗ ρ′ is the

https://stacks.math.columbia.edu/tag/01WR
https://stacks.math.columbia.edu/tag/01WS
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morphism of OX-modules given by the composition
L ⊗OX

L′ → OX ⊗OX
OX

∼= OX .

Example 3.2 (Effective Cartier divisors). Given an effective Cartier
divisor D ⊂ X, the pair (OX(−D), jD) is a generalized effective Cartier
divisor. By definition, two effective Cartier divisors D′, D ⊂ X are
isomorphic as generalized effective Cartier divisors if and only if they
are equal and the isomorphism is therefore unique.
Example 3.3 (Generalized effective Cartier divisors on affine schemes).
In light of the equivalence between R-modules and quasicoherent OX-
modules on X = SpecR, a generalized effective Cartier divisor on an
affine scheme is of the from (M̃, λ̃) for a projective R-module M of rank
one, and a morphism λ : M → R of R-modules. In particular, λ(M) is
an ideal in R. Two generalized effective Cartier divisors (M ′, λ′) and
(M,λ) on SpecR are isomorphic if and only if there exists an R-module
isomorphism σ : M ′ →M such that λ′ = λ◦σ. In particular, note that
such a pair gives rise to the same ideal λ′(M ′) = λ(σ(M ′)) = λ(M).
Definition 3.4 (Root stack). Fix an effective Cartier divisor D on a
scheme X, and a positive integer r. Let r

√
X;D be the fibered category

over Xfppf with:
Objects: triples (f : T → X, (M, λ), σ) where f : T → X is an X-
scheme, (M, λ) is a generalized effective Cartier divisor on T , and
σ : (M⊗r, λ⊗r) → (f ∗OX(−D), f ∗jD) is an isomorphism of generalized
effective Cartier divisors on T .
Morphisms: a morphism

(f ′ : T ′ → X, (M′, λ′), σ′) → (f : T → X, (M, λ), σ)

is the data of a pair (h, h♭) where h : T ′ → T is an X-morphism, and
h♭ : (M′, λ′) → (h∗M, h∗λ) is an isomorphism of generalized effective
Cartier divisors on T ′ such that the following diagram commutes

M′⊗r h∗M⊗r

(f ′)∗OX(−D) h∗f ∗OX(−D).

h♭⊗r

σ′ h∗σ

∼

Remark 3.5 (Points on a root stack). Usually, the base scheme X
is itself defined over a different base scheme S. If X = r

√
X;D, it is

common to abuse notation and write X(S). What we mean is that we
are considering X as a stack over S via the forgetful map Xfppf → Sfppf.
In particular, it follows that the groupoid X(S) is the disjoint union
over x ∈ HomS(S,X) = X(S) of the groupoids X(x).
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Remark 3.6 (Rooting a scheme at an effective Cartier divisor). We
are interested in the special case in which we root a scheme at a good
old effective Cartier divisor D. We abbreviate r

√
X; (OX(−D), jD) by

r
√
X;D. In particular, given an X-scheme f : T → X, the groupoid

r
√
X;D(f) consists of:

Objects: triples (f : T → X, (M, λ), σ) where (M, λ) is a generalized
effective Cartier divisor on T , and σ : (M⊗r, λ⊗r) → (f ∗OX(−D), f ∗jD)
is an isomorphism of generalized effective Cartier divisors on T .
Isomorphisms: (f : T → X, (M′, λ′), σ′) → (f : T → X, (M, λ), σ)
consist of pairs (h, h♭) where h ∈ Aut(T ) satisfies f = f ◦ h, and
h♭ : (M′, λ′) → (h∗M, h∗λ) is an isomorphism of generalized effective
Cartier divisors on T such that the following diagram commutes

M′⊗r h∗M⊗r

(f)∗OX(−D) h∗f ∗OX(−D).

h♭⊗r

σ′ h∗σ

∼

Finally, we arrive at the main definition of this section.

Definition 3.7 (Iterated root stack). Let X be a scheme. Take a finite
list P1, . . . , Dr of effective Cartier divisors on X, and let n1, . . . , nr be
positive integers. The iterated root stack of X at the divisors P1, . . . , Dr

with multiplicities n1, . . . , nr is the fiber product

(14)
n1
√
X;P1 ×X · · · ×X

nr
√
X;Dr → X.

3.2. The projective line rooted at a point. Our first concrete non
trivial example of a root stack is the projective line rooted at a single
point X := n

√
P1;P .

Definition 3.8. Let R be a principal ideal domain, and choose P =
(c : d) and Q = (a : b) in P1(R). Define the intersection ideal of P with
Q as I(P,Q) := (ad− bc)R ⊂ R.

The ideal I(P,Q) cuts out the locus in SpecR over which P and
Q intersect. Indeed, the pullback of the diagonal P1 → P1 × P1 by
(P,Q) : SpecR → P1 × P1 gives the closed subscheme SpecR/I(P,Q).
From the magic square, I(P,Q) can equivalently be defined by the
cartesian square

(15)
SpecR/I(P,Q) SpecR

SpecR P1
R .

Q

P
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�

Warning 3.9. The pullback P ∗OP1(−Q) does not coincide with
the sheaf corresponding to I(P,Q). More generally, the pulback of
a quasicoherent ideal sheaf need not coincide with the ideal sheaf of
the pulled back closed subscheme. Nevertheless, we have the following
commutative diagram of sheaves on SpecR with exact rows

(16)

P ∗OP1(−Q) P ∗OP1 P ∗Q∗R̃ 0

0 ˜I(P,Q) R̃ ˜R/I(P,Q) 0 .

λ̃

Proposition 3.10. Let R be a principal ideal domain with fraction
field K. Let P1 = ProjR[s, t]. Fix a point P ∈ P1(R), and a positive
integer n. Let X := n

√
P1;P be the nth root stack of P1 at P , defined

over SpecR. Then,

X(R) =
⊔

Q∈P1(R)

X(Q),

where
(i) The fiber X(P ) contains one object up to isomorphism, with au-

tomorphism group isomorphic to µn(R) = {u ∈ R× : un = 1}.
(ii) For Q ̸= P the ideal I(P,Q) is nonzero, and the fiber X(Q)

contains one object with trivial automorphism group if and only if
I(P,Q) = Jn for some ideal 0 ̸= J ⊊ R, and is empty otherwise.

In particular, when R = K, we have that X⟨K⟩ ∼= P1(K).

Proof. Let X := n
√

P1;P . As explained in Remark 3.5, the groupoid
X(R) is the disjoint union of the groupoids X(Q), ranging over Q ∈
P1(R). We proceed to describe each groupoid X(Q).

To start, consider the pullback of the ideal sheaf OP1(−Q) = ĨQ via
the map P : SpecR → P1, where IQ = (at − bs)R[s, t] ⊂ R[s, t]. This
is a line bundle on SpecR corresponding to a certain free R-module of
rank one M(P,Q). Moreover, the pullback of the generalized effective
Cartier divisor jQ : OP1(−Q) ↪→ O1

P corresponds to an R-module homo-
morphism λ(P,Q) : M(P,Q) → R with image I(P,Q), as illustrated in
Diagram 16.

The objects in X(Q) are triples (Q, (M,λ), σ), where
• (M,λ) is a generalized effective Cartier divisor on SpecR (see Exam-

ple 3.3). Since R is a principal ideal domain, M is a free R-module
of rank one and λ : M → R is an R-module homomorphism.
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• σ : (M⊗n, λ⊗n) → (M(P,Q), λ(P,Q)) is an isomorphism of gener-
alized effective Cartier divisors on SpecR, that is, a commutative
triangle of R-modules

(17)
M⊗n M(P,Q)

R.

σ

∼=

λ⊗n
λ(P,Q)

By definition, an isomorphism (Q, (M ′, λ′), σ′) → (Q, (M,λ), σ) in
X(Q) is a pair (h, h♭), where
• h : SpecR → SpecR is a morphism over SpecR, so it must be the

identity.
• h♭ : M ′ → M is an isomorphism of R-modules such that λ′ = λ ◦ h♭

and the following diagram commutes

(18)

M ′⊗n M⊗n

R⊗r M(P,Q)

R.

h♭⊗n

σ

∼=

σ′

λ(P,Q)

(i) When P = Q, then I(P,Q) = 0 and this forces every map
λ : M → R to be the zero map. In particular, the bottom part
of diagram (18) imposes no restriction and the isomorphisms of
X(P ) are precisely the isomorphisms of R-modules h♭ : M ′ →M
such that

(M ′)⊗n M⊗n

M(P, P ).

h♭⊗n

∼=

σ′ σ

In particular, any triple (P, (M,λ), σ) in X(P ) has µn(R) auto-
morphisms.

(ii) When P ̸= Q, the commutativity of (17) requires that the nonzero
ideal I(P,Q) is the nth power of the ideal λ(M) in R. This
condition is also sufficient. Indeed, if I(P,Q) = Jn for some
nonzero ideal λ : J ⊂ R, then take an isomormphism of R-
modules σ : I(P,Q) →M(P,Q) and note that

(19) (Q, (J, λ), σ : Jn →M(P,Q))
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is an object of X(Q), and every object in X(Q) is isomorphic
to it. To calculate the automorphism group of this object, note
that the only possible isomorphism h♭ : J → J of R-modules such
that λ = h♭ ◦λ : J ↪→ R, is the identity. Thus, the automorphism
groups in X(Q) are trivial.

□

3.3. The Belyi stack. In this section, we summarize a few geometric
and arithmetic properties of the Belyi stack P1(a, b, c). This is the stack
corresponding to Darmon’s M -curve P1

a,b,c in [Dar97, p. 4].

Situation 3.11. Let
• (a, b, c) ∈ Z3 be a triple of positive integers,
• P1 = ProjZ[s, t], and
• P0 = V (s), P1 = V (s− t), P∞ = V (t) ∈ Div(P1

Z).

Definition 3.12 (Belyi stack). We define the Belyi stack P1(a, b, c) as
the iterated root stack of P1

Z at the divisors P0, P1, P∞ with multiplici-
ties a, b, c.

P1(a, b, c) :=
(

a√
P1;P0

)
×P1

(
b√
P1;P1

)
×P1

(
c√
P1;P∞

)
.

We start by summarizing some straightforward geometric proper-
ties of the Belyi stack. See [VZB22, Definition 11.2.1] and [VZB22,
Definition 5.2.1] for the definition of a (relative) stacky curve.

Lemma 3.13. The following statements hold.
(i) The Belyi stack P1(a, b, c) is a relative stacky curve over Z with

coarse space P1. The coarse space morphism P1(a, b, c) → P1 is
an isomorphism over the open set U = P1 − P0 ∪ P1 ∪ P∞.

(ii) Let R = Z[1/abc]. Then the base change P1(a, b, c)R is tame.
(iii) For every geometric point s : Spec k → SpecR, the fiber P1(a, b, c)s

is a stacky curve over k. Moreover, the Euler characteristic of
P1(a, b, c)s is

χ(P1(a, b, c)s) =
1
a
+ 1

b
+ 1

c
− 1.

We define this common value to be the Euler characteristic of
P1(a, b, c).

We now turn to the arithmetic of the Belyi stack. We want to under-
stand the set of Z-points on P1(a, b, c). The first step is to understand
the set of Z-points of the projective line rooted at a single point.

Lemma 3.14 (R-points on the Belyi stack). Let R be a principal ideal
domain. Let P1(a, b, c) be the base extension of the Belyi stack to R.



FERMAT DESCENT 21

The set P1(a, b, c)⟨R⟩ is in bijection with the subset of Q = (s : t) ∈
P1(R) = P1(k) such that Q ∈ {P0, P1, P∞}, or:

• I(P0, Q) = sR is a ath power.
• I(P1, Q) = (s− t)R is a bth power.
• I(P∞, Q) = tR is a cth power.

Proof. Let X denote the Belyi stack. As with any fiber product of
groupoids (see [Ols16, Section 3.4.9]), X⟨R⟩ is the fiber product of sets(

a
√

P1;P0

)
⟨R⟩ ×P1(R)

(
b
√

P1;P1

)
⟨R⟩ ×P1(R)

(
c
√

P1;P∞

)
⟨R⟩,

so the result follows from the description of the R-points of the nth root
stack of the projective line at a given point P given in Proposition 3.10.

□

As Darmon observed in [Dar97, p. 5], the integral points on the Belyi
stack P1(a, b, c) correspond to primitive integral solutions to generalized
Fermat equations of signature (a, b, c), up to some sloppiness in the
signs (i.e., A,B,C ∈ {±1} = Z×). If we consider Z[S−1]-points instead,
the same is true but allowing the coefficients A,B,C ∈ Z[S−1]×.

Lemma 3.15. Let S be a finite (possibly empty) set of primes, and
let R = Z[S−1]. Then, every point in Q = P1(a, b, c)⟨R⟩ arises from a
primitive integral solution to a generalized Fermat equation F : Axa +
Byb + Czc = 0, where A ·B · C ∈ R× , as j(x, y, z) = Q.

Proof. Explicitly, an object in the groupoid X(Q) is a triple

(Q, [(M0, λ0), (M1, λ1), (M∞, λ∞)] , (σ0, σ1, σ∞))

where (M0, λ0), (M1, λ1), (M∞, λ∞) are generalized effective Cartier di-
visors on SpecR, and σ0, σ1, σ∞ are isomorphisms of generalized effec-
tive Cartier divisors on SpecR

σ0 : (M
⊗a
0 , λ⊗a0 ) → Q∗(OP1(−P0), j0) = (M(P0, Q), λ(P0, Q)),

σ1 : (M
⊗b
1 , λ⊗b1 ) → Q∗(OP1(−P1), j1) = (M(P1, Q), λ(P1, Q)),

σ∞ : (M⊗c
∞ , λ⊗c∞ ) → Q∗(OP1(−P∞), j∞) = (M(P∞, Q), λ(P∞, Q)).

If Q = (s : t), it follows from the assumption that R is a principal ideal
domain and Lemma 3.14 that s = −A ·xa, t = C · zc, and s− t = B · yb
for some A,B,C ∈ R× and x, y, z ∈ R. Since −s+ (s− t) + t = 0, this
implies that Axa + Byc + Czc = 0. Moreover, since sR + tR = R, we
also have that xaR + zcR = R. □
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3.4. Triangle groups and Belyi maps.

Situation 3.16.
• k denotes a perfect field.
• K denotes a number field, with ring of integers OK .
• For any prime p ∈ SpecOK , let Kp be the p-adic completion of K,

and let k(p) be the corresponding residue field.
• Zk denotes a nice (smooth, projective, geometrically integral) curve

(separated scheme of finite type over a field), defined over k.
• ϕ : Zk → P1

k will denote a k-morphism.

The fundamental group of the thrice-punctured Riemann sphere
CP1 − {0, 1,∞} is the free group on three generators; these genera-
tors are represented by loops γ0, γ1, γ∞ going around the punctures.
Introducing the stackyness imposes the relations

γa0 = γb1 = γc∞ = γ0γ1γ∞ = 1

on the generators. This is the fundamental group of the Belyi orb-
ifold P1(a, b, c)(C). The abstract group defined by these generators
and relations is the triangle group △̄(a, b, c). For more on this topic see
[CV19, Section 2], [Mag74, Chapter II]. (More generally, the fundamen-
tal groups of any orbifold curve can be calculated via van Kampen’s
theorem [BN06, Proposition 5.6].)

Definition 3.17. Let Zk be a nice curve defined over a perfect field
k. A k-Belyi map is a finite k-morphism ϕ : Zk → P1

k that is unramified
outside {0, 1,∞} ⊂ P1(k).

Remark 3.18. These remarkable covers of the projective line are
named after the Ukrainian mathematician G. V. Belyi , who famously
proved that a complex algebraic curve can be defined over a number
field if and only if it admits a C-Belyi map [Bel79, Bel02]. For this rea-
son, it is customary to require that k ⊂ C to use the term Belyi map.
We ignore this convention, and allow k to have positive characteristic.

Since π1(P1(a, b, c)(C)) is the triangle group △̄(a, b, c), the Riemann
Existence Theorem guarantees that monodromy groups of Galois Belyi
maps are always finite quotients of triangle groups.

Definition 3.19. Let ϕ : Zk → P1
k be a k-Belyi map with automor-

phism k-group scheme Aut(ϕ). We say that ϕ is geometrically Galois
with Galois group G if the extension of function fields k(Zk̄) ⊃ k(P1

k̄
)

is Galois, with Galois group G. Equivalently, ϕ is geometrically Galois
if the monodromy group Aut(ϕ)(k̄) is isomorphic to G and acts tran-
sitively on the set of critical points ϕ−1 {0, 1,∞} ⊂ Z(k̄). This is the
case if and only if #Aut(ϕ)(k̄) = #G = deg ϕ.
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Definition 3.20. The signature of a geometrically Galois k-Belyi map
ϕ : Zk → P1

k is the triple (e0, e1, e∞) where eP is the ramification index
eϕ(z) of any critical point z ∈ Zk with critical value P ∈ {0, 1,∞}.
The Euler characteristic of ϕ is the quantity
(20) χ(ϕ) := 1

e0
+ 1

e1
+ 1

e∞
− 1.

As a consequence of the Riemann Existence Theorem, there exist
Galois Belyi maps of any signature. See [DG95, Proposition 3.1] and
[Poo05, Lemma 2.5].

Proposition 3.21. For any positive integers a, b, c > 1, there exists a
number field K and a geometrically Galois K-Belyi map ϕ : ZK → P1

K

of signature (e0, e1, e∞) = (a, b, c). Let g be the genus of ZK, and G be
the monodromy group of ϕ. Then 2− 2g = deg ϕ · χ(ϕ). In particular,

(i) If χ(ϕ) > 0, then g = 0 and deg ϕ = #G(K̄) = 2/χ(ϕ).
(ii) If χ(ϕ) = 0, then g = 1.
(iii) If χ(ϕ) < 0, then g > 1.

The definition of the Belyi stack implies the following.

Lemma 3.22. Let ϕ : ZK → P1
K be a geometrically Galois K-Belyi

map of signature (a, b, c). Then, there exists an étale Aut(ϕ)-torsor
ψ : ZK → P1(a, b, c)K such that Diagram (21) commutes.

(21)

ZK

P1(a, b, c)K

P1
K .

ϕgeometrically Galois Belyi

ψ

étale Aut(ϕ)-torsor

coarse

We wish to find integral models for our geometrically Galois Belyi
maps defined over number fields with certain good reduction prop-
erties. Informally, we want to spread out Lemma 3.22 to the ring
of T -integers in OK for a certain finite set of primes (containing the
archimedean primes). To accomplish this, we rely on the work of Beck-
mann [Bec89, Bec91], which has been expanded and refined by [Con00],
[DG11], [DG12], and more recently by [BCLV25].

Lemma 3.23 (Good reduction). Let ϕ : ZK → P1
K be a geometrically

Galois K-Belyi map, with Galois group G and signature (a, b, c). Then,
there exists a finite set of primes T in K and a model Φ: Z → P1

R,
defined over R = OK [T −1], such that for every p ̸∈ T :
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(1) ϕ has good reduction at p (meaning that ϕ×KKp has good reduction
in the sense of [BCLV25, Definition 4.1]), and

(2) the special fiber Φp : Zk(p) → P1
k(p) is a geometrically Galois k(p)-

Belyi map with Galois group G and signature (a, b, c).
More over, under these conditions, there exists an étale Aut(Φ)-torsor
Ψ: Z → P1(a, b, c)R such that Diagram (22) commutes.

(22)

Z

P1(a, b, c)R

P1
R .

Φ

Ψ

étale Aut(Φ)-torsor

coarse

Proof. The existence of the finite set T for which (1) holds is proved
in [BCLV25, Lemma 5.1]: note that if L ⊇ K is the smallest field
extension over which ϕL is Galois, then ZL → ZK → P1 is the Galois
closure of ϕ. For (2) and the final statement, we can apply [BCLV25,
Theorem 5.3]. □

4. The stack [U/H]
4.1. The group H. For this section we will need some basic notions
from the theory of diagonalizable group schemes of multiplicative type.
See the notes of Oésterle [Oes14] and Conrad [Con14, Appendix B].

Given a base scheme S, and a finitely generated Z-module M , we
define DS(M) to be the S-group scheme SpecOS[M ] representing the
functor HomS−GrpSch(MS,Gm) of characters of the constant S-group
scheme MS. An S-group scheme is called diagonalizable if it is isomor-
phic to DS(M) for some finitely generated Z-module M . Moreover,
DS gives a contravariant functor between finitely generated Z-modules
and the category of diagonalizable S-group schemes satisfying certain
exactness properties that are summarized in [Oes14, 5.3].

Situation 4.1. Let
• D denote the functor described above, over the base scheme S =
SpecZ.

• (a, b, c) be a triple of positive integers.
• m := gcd(bc, ac, ab), and define the weight vector of (a, b, c) by w =
(w0, w1, w∞), where w0 = bc/m, w1 = ac/m and w∞ = ab/m.
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• Gm(w) be the image of the (injective) homomorphism Gm → G3
m

given by λ 7→ (λw0 , λw1 , λw∞).
• △̄(a, b, c) denote the triangle group

△̄(a, b, c) = ⟨γ0, γ1, γ∞ : γa0 = γb1 = γc∞ = γ0γ1γ∞ = 1⟩.
Definition 4.2. Consider the finitely generated Z-module

(23) M := ⟨(a,−b, 0), (0, b,−c), (−a, 0, c)⟩ ⊂ Z3.

Define H to be the subgroup D(Z3/M) of G3
m = D(Z3).

The diagonalizable group H admits a maximal torus corresponding
to the Z-free part of Z3/M . Moreover, we have the following charac-
terization. An important formula to keep in mind is

(24) lcm(a, b, c) =
abc

gcd(bc, ac, ab)
.

Lemma 4.3 (The structure of H). Let K = D(△̄(a, b, c)ab), and recall
that m = gcd(bc, ac, ab).
(1) The Z-module Z3/M is isomorphic to Z⊕ △̄(a, b, c)ab.
(2) Let K be the kernel of the map

µa × µb × µc → µlcm(a,b,c), (ξ0, ξ1, ξ∞) 7→ ξ0 · ξ1 · ξ∞.
Then K ∼= D(△̄(a, b, c)ab).

(3) The group scheme H is equal to Gm(w)·K and isomorphic to Gm×K.
(4) In particular, when m = 1, H = Gm(w) ∼= Gm.

Proof. (1) We calculate the invariant factor decomposition of Z3/M
from the Smith normal form of the matrix having the generators of M
as its rows [Sta16, Theorem 2.3]. Let

m =

 a −b 0
0 b −c
−a 0 c

 .
From Stanley’s formula [Sta16, Theorem 2.4], we see that

SNF(m) =

d 0 0
0 m/d 0
0 0 0

 ,
where d = gcd(a, b, c) is the greatest common divisor of the 1 × 1
minors, and m = gcd(bc, ac, ab) is the greatest common divisor of the
2× 2 minors. It follows that Z3/M ∼= Z⊕ Z/dZ⊕ Z/(m/d)Z.
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It remains to show that Z/dZ⊕Z/(m/d)Z is isomorphic to △̄(a, b, c)ab.
To this end, note that the group △̄(a, b, c)ab is isomorphic to the quo-
tient of Z3 by the subgroup

J = ⟨(a, 0, 0), (0, b, 0), (0, 0, c), (1, 1, 1)⟩.
As before, we calculate the invariant factor decomposition of Z3/J via
a Smith normal form computation.

SNF


a 0 0
0 b 0
0 0 c
1 1 1

 =


1 0 0
0 d 0
0 0 m/d
0 0 0

 .
We conclude that △̄(a, b, c)ab ∼= Z3/J ∼= Z/dZ⊕ Z/(m/d)Z.

(2) From the presentation given in Situation 4.1, we see that △̄(a, b, c)ab

is the cokernel of the map Z/lZ → Z/aZ ⊕ Z/bZ ⊕ Z/cZ taking
1mod l 7→ (1mod a, 1mod b, 1mod c), where l = lcm(a, b, c). The re-
sult follows by applying the functor D.

(3) The computation above shows that Z3/M has Z-rank one. The
free part of Z3/M corresponds to the (dual of the) kernel of the matrix
m. That is, we want a generator for the subgroup of v ∈ Z3 such that a −b 0

0 b −c
−a 0 c

v =

00
0

 .
In other words, we are looking for minimal v1, v2, v3 ∈ Z satisfying
av1 = bv2 = cv3. But this is precisely the property defining the weight
vector w (see Situation 4.1). The equality H = Gm(w) · K follows
from the exact sequence 0 → Z3/⟨w⟩ → Z3/M → Z3/J → 0 and the
exactness of the functor D.

The statement that H ∼= Gm×K follows from the fact that Z3/⟨w⟩ has
Z-rank one and the general fact that D(M1 ⊕M2) ∼= D(M1)×D(M2)
for arbitrary finitely generated Z-modules M1,M2. □

Lemma 4.4. Let S be a finite set of rational primes, and let R =
Z[S−1]. Then H1(R,HR) is finite.

Proof. From H ∼= Gm × K, we obtain the exact sequence H1(R,Gm) →
H1(R,H) → H1(R,K) → H2(R,Gm). Since H1(R,Gm) = PicZ is triv-
ial, we have that H1(R,H) injects into the finite group H1(R,K). □

4.2. Proof of the main theorem. We are ready to prove the main
result.

Situation 4.5. We place ourselves in the following situation for the
remainder of this section.
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• Let F := SpecZ[x, y, z]/⟨Axa +Byb + Czc⟩ ⊂ A3.
• Let T be set of primes dividing the integer a · b · c · A ·B · C.
• Let R = Z[T −1] be the ring of T -integers.
• Let H be the affine group scheme introduced in Definition 4.2.
• Let U be the punctured cone associated to F , defined over R.
• Let s : Spec k → SpecR denote a geometric point.
• For a geometric object X defined over R, we let Xs := X ×s Spec k

denote the geometric fiber above s.

We recall the statement of our main theorem and then proceed to
prove some preliminary lemmas.

Theorem 4.6. The map

(25) j : U → P1
R, (x, y, z) 7→ (−Axa : Czc)

induces an isomorphism j : [U/HR] ∼= P1(a, b, c)R.

The reason we are interested in the group scheme H is that it arises as
the stabilizer in G3

m of the punctured cone U associated to a generalized
Fermat equation.

Lemma 4.7. Let S be the stabilizer subgroup of U under the action of
G3

m on A3
Z. Then, H ⊂ S and HR = SR.

Proof. By definition, S := StabG3
m
(U) is the group scheme that takes

any Z-algebra B to the group

S(B) =
{
(λ0, λ1, λ∞) ∈ (B×)3 : F (λ0x, λ1y, λ∞z)/F (x, y, z) ∈ B×} ,

and this group visibly contains

H(B) =
{
(λ0, λ1, λ∞) ∈ (B×)3 : λa0 = λb1 = λc∞

}
.

So we have an inclusion H ↪→ S. For every geometric point s : Spec k →
SpecR, this inclusion pulls back to an equality Ss = Hs, so we conclude
that SR = HR by fpqc descent [Sta24, Tag 02L4] and spreading out. □

We start by considering the situation on the geometric fibers.

Lemma 4.8. For every geometric point s : Spec k → SpecR, the map

(26) j : Us → P1
s, (x, y, z) 7→ (−Axa : Czc)

induces an isomorphism js : [Us/Hs] ∼= P1(a, b, c)s.

Proof. We omit the subscript “s ” and work over k throughout. We
start by showing that j induces a coarse map j : [U/H] → P1. Recall
that R = k[x, y, z]/⟨Axa + Byb + Czc⟩ is the coordinate ring of F .
Consider the affine open D(z) ⊂ F , with corresponding coordinate
ring R[1/z]. Note that U ∩D(z) = D(z). Since D(z) = SpecR[1/z] is

https://stacks.math.columbia.edu/tag/02L4
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affine, H is linearly reductive, and [D(z)/H] is tame, the natural map
[SpecR[1/z]/H] → SpecR[1/z]H is a good moduli space and thus a
coarse moduli space (see [Alp13, Theorem 13.2 and Remark 7.3]). Now,
we calculate that R[1/z]H = k

[−Axa
Czc

]
. Applying the same argument to

D(x), the result follows by glueing the maps

[U ∩D(x)/H] → Spec k
[−Czc

Axa

]
, [U ∩D(z)/H] → Spec k

[−Axa
Czc

]
to obtain the coarse map j : [U/H] → P1.

We proceed to show that [U/H] ∼= P1(a, b, c). By definition of P1(a, b, c)
as an iterated root stack, the map j : U → P1 induces a map j : [U/H] →
P1(a, b, c). Indeed, the map j : U → P1 satisfies

j∗OP1(−P0) = La0, j∗OP1(−P1) = Lb1, j∗OP1(−P∞) = Lc∞,
with L0 = x · OU ,L1 = y · OU and L∞ = z · OU , and this gives rise an
object in P1(a, b, c)(U).

Since [U/H]⟨k⟩ = P1(k) = P1(a, b, c)⟨k⟩, and the map [U/H](k) →
P1(a, b, c)(k) induces isomorphisms between the stabilizer groups of the
stacky points

StabH(V (x)) ∼= µa(k),

StabH(V (y)) ∼= µb(k),

StabH(V (z)) ∼= µc(k).

The result follows from [VZB22, Lemma 5.3.10(a)]. □

Proof of Theorem 4.6. The R-morphism j is surjective (this can be
checked on geometric fibers by fpqc descent [Sta24, Tag 02KV] and
spreading out) and HR-invariant. From Lemma 2.14, this induces
a morphism [U/HR] → P1

R, which factors through the coarse map
P1(a, b, c)R → P1

R by the definition of the Belyi stack. Both P1(a, b, c)R
and [U/HR] are tame relative stacky curves. To calculate the coarse
space of U/H of [U/H], we use the same argument as in the proof of
Lemma 4.8.

U

[U/HR] P1(a, b, c)R

P1
R

j

coarse

j

coarse

In summary, we have a morphism j : [U/H]R → P1(a, b, c)R with the
property that on each geometric fiber, the induced map on the coarse

https://stacks.math.columbia.edu/tag/02KV
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spaces (U/H)s → P1
s is an isomorphism inducing a stabilizer-preserving

bijection between [U/H]⟨k̄⟩ and P1(a, b, c)⟨k̄⟩. [VZB22, Lemma 5.3.10
(a)] implies that (j̃)s is an isomorphism for every geometric point of
SpecR, and this implies that the same is true globally. Alternatively,
we can apply Santens’ characterization of tame relative stacky curves
[San22b, Lemma 2.1]. □

5. The method of Fermat descent

What follows is a brief discussion of the method of Fermat descent.
This is not intended to be a comprehensive algorithm for finding the
primitive integral solutions of an arbitrary generalized Fermat equation
with integer coefficients. Rather, it is meant as an artisanal guide to
the method, from the point of view developed in this article.

Situation 5.1. We fix the following setup for the remainder of this
section.
• Let (a, b, c) be a triple of positive integers, with a, b, c > 1.
• Let F : Axa+Byb+Czc = 0 ⊂ A3

Z be a generalized Fermat equation.
• Let S be the set of primes p dividing a·b·c·A·B ·C, and R := Z[S−1].
• Let U denote the punctured cone associated to F .
• Let H be as in Definition 4.2.
• Let j : U → P1 be the morphism (x, y, z) 7→ (−Axa : Czc).

As a consequence of Theorem 4.6, we have that j(U(Z)) is contained
in the set P1(a, b, c)⟨R⟩ ⊂ P1(R) = P1(Q). This is our starting point.
The method of Fermat descent consists of three steps: covering, twist-
ing, and sieving.

5.1. Covering. The goal is to find a geometrically Galois Belyi map
(Definition 3.19) ϕ : ZK → P1

K . We know that one exists from Propo-
sition 3.21, but we might have to base extend to a number field K
to find it. Furthermore, the map ϕ admits an integral model Φ over
SpecOK [T −1] for some finite set of primes T which we can arrange to
contain the primes above S. In practice, it is desirable to minimize the
complexity of this data as much as possible.

5.2. Twisting. Now that we found a covering Φ: Z → P1
OK [T −1] with

automorphism group scheme Aut(Φ), we are tasked with finding:
(1) The (Čech fppf) cohomology set H1(OK [T −1],Aut(Φ)).
(2) For each τ ∈ H1(OK [T −1],Aut(Φ)), the twist Φτ : Zτ → P1

For (1), the first observation is that there is an isomorphism of
pointed sets between H1(OK [T −1],Aut(Φ)) is in bijective correspon-
dence with the Galois cohomology set H1

T (K,Gal(ϕ)), parametrizing
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isomorphism classes of Galois étaleK-algebras with Galois group Gal(ϕ)
= Aut(ϕ)(K̄) = Aut(ϕK̄), and unramified outside T . The second ob-
servation is that we might not need the full cohomology set. More
precisely, for our purposes of finding U(Z), we want to identify the
subset of those τ for which Φτ (Zτ (K)) ∩ j(U(Z)) ̸= ∅.

5.3. Sieving. Let R′ = OK [T −1]. If we reach this step, we have found
a subset T ⊂ H1(R′,Aut(Φ)) such that

j(U(Z)) ⊂
⊔
τ∈T

Φτ (Zτ (R
′)) =

⊔
τ∈T

ϕτ (Zτ (K)).

We use the word “sieve” to mean that our goal is separate the points on
the right hand side that do not come from primitive integral solutions
to F . For this purpose, it might be helpful to recall that j(U(Z)) is also
contained in P1(a, b, c)⟨R⟩, where R = Z[S] is a principal ideal domain,
to apply Lemma 3.14.
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