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Abstract. A solution (x, y, z) ∈ Z3 − {(0, 0, 0)} to a generalized
Fermat equation

(1) Axa +Byb + Czc = 0,

is called primitive if gcd(x, y, z) = 1. By work of Beukers [Beu98],
we know that in the spherical regime (that is, when the Euler
characteristic χ = 1

a + 1
b + 1

c − 1 is positive), if Equation (1) has
one primitive solution, then it has infinitely many. In this work,
we use the method of Fermat descent, as employed by Poonen–
Schaefer-Stoll [PSS07], to refine Beukers’ result to an asymptotic
count of the number of primitive integral solutions of bounded
height.
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1. Introduction

1.1. Poonen’s heuristic. We follow [Poo06]. Let a, b, c be positive
integers, and consider the following subset of the rational points on the
projective line P1(Q) ∼= Q ∪

{
1
0

}
.

Ω(a, b, c) :=

Q ∈ P1(Q) :
(i) num(Q) is an ath power,
(ii) num(Q− 1) is a bth power,
(iii) den(Q) is a cth power.

 .(2)

By the numerator and denominator of a point Q ∈ P1(Q), we mean
the first and second coordinate of any representative ±(s, t) ∈ Z2 for
Q = (s : t) with gcd(s, t) = 1. This pair is only well defined up to sign.
We say that an integer m is an nth power if the ideal mZ equals enZ
for some e ⩾ 0. In particular, 0, 1,∞ ∈ Ω(a, b, c).
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To any subset Ω ⊆ P1(Q) we associate the subset of points of
bounded height, and the corresponding counting function. Given h
positive, define

Ω⩽h := {Q ∈ Ω : Ht(Q) ⩽ h} , N(Ω;h) := #Ω⩽h,(3)

where Ht: P1(Q) → Z⩾0 is the usual multiplicative height, given by

(4) Ht(Q) = max {| num(Q)|, | den(Q)|} .

Heuristic 1.1. We estimate the probability that a uniformly random
rational number of height not exceeding h ≫ 0 is in the set Ω(a, b, c).
We do this under the heuristic assumption that the events (i), (ii), and
(iii) defining Ω(a, b, c) in Equation (2) are independent.

We have that

#
{
Q ∈ P1(Q)⩽h : num(Q) is an ath power

}
#P1(Q)⩽h

.
=

h · h1/a

h2
= h−1+1/a,

#
{
Q ∈ P1(Q)⩽h : num(Q− 1) is an bth power

}
#P1(Q)⩽h

.
=

h · h1/b

h2
= h−1+1/b,

#
{
Q ∈ P1(Q)⩽h : den(Q) is an cth power

}
#P1(Q)⩽h

.
=

h · h1/c

h2
= h−1+1/c,

where the notation f(h)
.
= g(h) means that there exists an implicit

constant κ > 0 such that f(h) = κ · g(h) as h → ∞. The independence
assumption implies that

#Ω(a, b, c)

#P1(Q)⩽h

.
=

(
h−1+1/a

) (
h−1+1/b

) (
h−1+1/c

) .
= h−3+1/a+1/b+1/c.

The heuristic above suggests that the Euler characteristic

(5) χ(a, b, c) := 1
a
+ 1

b
+ 1

c
− 1

forces Ω(a, b, c) to be{
infinite, if χ(a, b, c) > 0, and
finite, if χ(a, b, c) < 0.

This prediction turns out to be correct. The hyperbolic case (when
χ < 0) can be deduced from a theorem of Darmon and Granville [DG95,
Theorem 2]. The spherical case (when χ > 0) can be deduced from a
theorem of Beukers [Beu98, Theorem 1.2]. More precisely, the heuristic
suggests that in the spherical case one has N(Ω(a, b, c);h) ≍ hχ, as h
tends to infinity.
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1.2. Results. Our first result confirms the prediction of Heuristic 1.1.

Theorem 1.2. Suppose that a, b, c > 1 and that χ := χ(a, b, c) > 0.
Then, there exists an explicitly computable constant κ(a, b, c) > 0 such
that for every ε > 0,

N(Ω(a, b, c);h) = κ(a, b, c) · hχ +O(hχ/2+ε),

as h → ∞. The implicit constant depends on (a, b, c) and ε.

Consider the generalized Fermat equation

(6) F : Axa +Byb + Czd = 0 ⊂ A3
Z

for arbitrary integers A,B,C satisfying A · B · C ̸= 0. A solution
(x, y, z) ∈ Z3 − {(0, 0, 0)} is said to be primitive when gcd(x, y, z) = 1.
Corresponding to each F , we have the punctured cone U (obtained
by deleting the closed subscheme {x = y = z = 0} from F ) and the
morphism

(7) j : U → P1
Z, (x, y, z) 7→ (−Axa : Czc).

Note that U(Z) is identified with the set of primitive integral solutions
to F . Define the subset Ω(F ) ⊂ P1(Q) to be the image of the function
j(Z) : U(Z) → P1(Z) = P1(Q).

The set Ω(a, b, c) and the primitive integral solutions to the equation
are closely related when A,B,C ∈ Z× = {±1}. Indeed, given Q ∈
Ω(a, b, c), then | num(Q)| = |x|a, | num(Q − 1)| = |y|b and | den(Q)| =
|z|c. From the identity

− num(Q) + num(Q− 1) + den(Q) = 0,

we deduce that (x, y, z) is a primitive integral solution to Equation (6)
for some choice of (A,B,C) ∈ {±1}3. Conversely, given a primitive
integral solution (x, y, z) to the equations

xa+ yb+ zc = 0, xa+ yb− zc = 0, xa− yb+ zc = 0, xa− yb− zc = 0,

we see that Q = ±xa/zc is in Ω(a, b, c).
By carefully identifying how the sets Ω(F ) fit inside of Ω(a, b, c) (or

rather, certain supersets ΩS(a, b, c) ⊃ Ω(a, b, c)) we are able to obtain
the following stronger result.

Theorem 1.3. Consider Equation (6) with A,B,C ∈ Z nonzero and
a, b, c > 1. Suppose that χ := χ(a, b, c) > 0, and that there exists at
least one primitive integral solution to F . Then, there exists an explicit
constant κ(F ) > 0 such that for every ε > 0,

N(Ω(F );h) = κ(F ) · hχ +O(hχ/2+ε),

as h → ∞. The implied constant depends on ε.
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1.3. S-integral points on the Belyi stack. Our approach is geo-
metric. We use the method of Fermat descent, developed by [DG95],
[Dar97], and [PSS07], and expanded on in [AP25] from the point of
view of stacks. It turns out Ω(a, b, c) is precisely the set of Z-points on
the Belyi stack of signature (a, b, c), denoted by P1(a, b, c) (see [AP25,
Section 3]). This is the stacky version of Darmon’s M -curve P1

a,b,c

[Dar97, p. 4].

Notation 1.4 (Set of points on a stack). If X is a stack and R is a
ring, we denote by X(R) the groupoid of R-points, and by X⟨R⟩ the
set of R-points, (see [AP25, Section 2.1]).

For the purposes of this work, we need only to understand the set
P1(a, b, c)⟨R⟩ in the case that R = Z[S−1] for some finite set of rational
primes S. In [AP25, Lemma 3.3], we show that the set P1(a, b, c)⟨R⟩
is in bijective correspondence with the subset ΩS(a, b, c) of the rational
points on the projective line of points Q ∈ P1(Q) which satisfy the
property that the ideals

(8) num(Q)R, num(Q− 1)R, den(Q)R,

are ath, bth, and cth powers respectively. Since R is a principal ideal
domain, Q belongs to ΩS(a, b, c) ⊂ P1(Q) if and only if

num(Q) = −Axa, num(Q− 1) = Byb, den(Q) = Czc,

for some A,B,C ∈ R×, and x, y, z ∈ Z with gcd(x, y, z) = 1. This
choice of coefficients (A,B,C) ∈ (R×)3 is only well defined up to
coordinate-wise multiplication by a unit in R. In particular, we can
arrange for A,B,C to be in Z ∩ R× = {n ∈ Z : p | n implies p ∈ S}.
These considerations lead to the following definition.

Definition 1.5. Let S be a finite set of primes. Define the S-simplified
Fermat coefficient triple of a point Q ∈ ΩS(a, b, c) to be the unique triple
(A,B,C) ∈ Z3 satisfying the following properties:

(i) The integers A,B,C are S-units.
(ii) A is ath power-free, B is bth power-free, and C is cth power-free.
(iii) A > 0.
(iv) A | num(Q), B | num(Q− 1), and C | den(Q).

We denote this assignment by sfc(Q) = (A,B,C). We say that a
generalized Fermat equation F : Axa + Byb + Czc = 0 is S-simple or
S-simplified if the coefficients (A,B,C) satisfy the properties (i), (ii),
and (iii) above. We say that F is simple or simplified, if it is S-simple
for S := {p prime : p | A ·B · C}.

Example 1.6. The ∅-simple Fermat equations have ±1 coefficients.
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1.4. The Pythagorean case. To introduce the main ideas in our
proofs, we consider the elementary case of signature (a, b, c) = (2, 2, 2),
where the mention of stacks is unnecessary and could be considered
excessive. We remark that Lehmer [Leh00, p. 38] and Lambek–Moser
[LM55] already counted the number of Pythagorean triangles with
bounded hypotenuse, and the analytic number theory techniques used
in their work and in ours remain essentially the same. In our notation,
their theorem would read as follows.

Theorem 1.7 (Lehmer, Lambek–Moser). Consider the Pythagorean
equation F3 : x

2 + y2 − z2 = 0. Then,

N(Ω(F3);h) ∼ 1
π
· h1/2,

as h → ∞.

Our first observation is that Theorem 1.7 implies the special case of
Theorem 1.2 for signature (a, b, c) = (2, 2, 2).

Theorem 1.8. The asymptotic

N(Ω(2, 2, 2);h) ∼ 3
π
· h1/2

holds, as h → ∞.

Proof. Consider the group G := {±1}3 /± 1, and list its elements

e0 = [1, 1, 1], e1 = [−1, 1, 1], e2 = [1,−1, 1], e3 = [1, 1,−1].

Consider the Fermat conics F0, F1, F2, F3 with x2, y2, z2 coefficients given
by the element in G with matching index. For each element in G, we
attach a corresponding map j : U → P1 as in Equation (7).

Table 1. G-twists of Pythagorean equation.

G F j

e0 x2 + y2 + z2 = 0 (x, y, z) 7→ (−x2 : z2)

e1 x2 − y2 − z2 = 0 (x, y, z) 7→ (x2 : z2)

e2 x2 − y2 + z2 = 0 (x, y, z) 7→ (−x2 : z2)

e3 x2 + y2 − z2 = 0 (x, y, z) 7→ (x2 : z2)
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The set Ω(2, 2, 2) is the pushout

Ω(F1) ⊔ Ω(F2) ⊔ Ω(F3)

{0, 1,∞}
.

In other words, Ω(2, 2, 2) = Ω(F1) ∪ Ω(F2) ∪ Ω(F3) and the pairwise
intersections Ω(Fi)∩Ω(Fj) for i, j ∈ {1, 2, 3} are contained in {0, 1,∞}.
This can be checked by partitioning the set Ω(2, 2, 2) according to the
signs of num(Q), num(Q−1), and den(Q), and staring at Table 1. From
this description, we deduce that

N(Ω(2, 2, 2);h) = N(Ω(F1);h)+N(Ω(F2);h)+N(Ω(F3);h) ∼ 12
π
·h1/2.

□

Now, we will prove Theorem 1.7 using the method of Fermat descent.

Proof of Theorem 1.7. The proof proceeds in three steps: covering,
twisting, and sieving.

Step 1: (Covering) A suitable covering is readily available. Indeed,
if Z0 denotes the plane conic defined by F0, the j-map j0 : U0 → P1

induces the morphism

ϕ0 : Z0 → P1
Q, (x : y : z) 7→ (−x2 : z2).

One verifies that ϕ is a Galois Belyi map defined over Q with Galois
group G, diagonally embedded in PGL3(Q). Since U0(Z) is empty, so
is Ω(F0).

Any other cover ϕi : Zi → P1 (induced from ji : Ui → P1) would
suffice, but we choose the pointless conic for dramatic emphasis.

Step 2: (Twisting) Consider the Galois cohomology group H1(Q, G).
Since the absolute Galois group GalQ := Gal(Q̄|Q) acts trivially on the
abelian group G, H1(Q, G) is the group of continuous group homomor-
phisms GalQ → G. Every such map factors through a unique injective
morphism Gal(L|Q) ↪→ G, where L ⊃ Q is a finite Galois extension.

The only bad prime for the covering (in the sense of [AP25, Lemma
3.23]) ϕ is p = 2. In the notation of Section 1.3, S = {2}, and
R = Z[1/2]. By descent theory, we are only interested in the subset
H1

S(Q, G) ⊂ H1(Q, G) corresponding to those injections Gal(L|Q) ↪→ G
for which L is unramified outside {2}. The possible fields are

L ∈
{
Q,Q(

√
−1),Q(

√
2),Q(

√
−2),Q(ζ8)

}
.

Descent theory tells us that the set ΩS(2, 2, 2) := P1(2, 2, 2)⟨R⟩ ∼=
[P1

R/Aut(Φ)]⟨R⟩ is partitioned by the disjoint union of the sets ϕρ(Zρ(Q)),
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as ρ ranges over H1
S(Q, G).

(9) ΩS(2, 2, 2) =
⊔

ρ∈H1
S(Q,G)

ϕρ(Zρ(Q)).

It is well known that for a finite morphism ϕ : P1
Q → P1

Q, one has
that N(ϕ(P1(Q));h) ≍ h2/ deg ϕ. Moreover, in the special case that
ϕ is geometrically Galois, N(ϕ(P1(Q));h) ∼ κ(ϕ) · h2/ deg ϕ for some
explicitly computable constant κ(ϕ) > 0. We give a detailed proof of
these results in Section 3 for completeness. Combining this with the
partition Equation (9) implies that

N(ΩS(2, 2, 2);h) =
∑
ρ

N(ϕρ(Zρ(Q));h) ∼ κ((2, 2, 2),S) · h1/2,

where the sum is restricted to those ρ : Gal(L|Q) ↪→ G in HS(Q, G)
for which the twist Zρ is isomorphic to P1

Q. In particular, the constant
κ((2, 2, 2),S) will be the sum of the constants κ(ϕρ).

Step 3: (Sieving) The count above already contains the count of the
proper subset Ω(F3) ⊂ ΩS(2, 2, 2) that we seek. Indeed, starting from
the partition (9), we note that, since the twists ϕρ are (Galois) Belyi
maps of signature (2, 2, 2), we can assign to each ρ ∈ H1

S(Q, G) a unique
2-simplified coefficient (Aρ, Bρ, Cρ) such that ϕρ(Zρ(Q)) is contained in
the set Ω(Fρ), associated to the generalized Fermat equation

Fρ : Aρx
2 +Bρy

2 + Cρz
2 = 0.

In particular, we deduce that some twist of ϕ0 : Z0 → P1 is isomorphic
to ϕ3 : Z3 → P1, and that Ω(F3) = Ω(ϕ3(Z3(Q)). In Example 3.5, we
calculate that κ(F3) = 1/π, and we conclude that

N(Ω(F1);h) = N(Ω(F2);h) = N(Ω(F3);h) ∼ 1
π
· h1/2.

□

1.5. Previous work on spherical Fermat equations. This work is
closely related to, and inspired by, the foundational contributions of
Beukers [Beu98]. Indeed, the arguments in Section 4 can be slightly
modified to reprove [Beu98, Theorem 1.2]. On a related note, the
excellent Master’s thesis of Esmonde [Esm99] addresses the problem of
solving the equation xa+yb−zc = 0 in polynomial rings k[t], for certain
examples of fields k. Building on work of Beukers, Edwards [Edw04]
completed the parametrizations of the spherical equations x2 + y3 −
z3 = 0, x2 + y3 − z4 = 0, and x2 + y3 − z5 = 0. We expect that the
method of Fermat descent employed here can be extended to compute
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parametrizations for general spherical Fermat equations; this is work
in progress by the author.

Acknowledgments. This work is part of the author’s PhD thesis.
We thank David Zureick-Brown, John Voight, and Andrew Kobin for
many enlightening conversations on this topic and for their valuable
feedback. We are also grateful to Bjorn Poonen for agreeing to serve
on the thesis committee and for his detailed and insightful comments
on an earlier draft.

2. Belyi maps and triangle groups

2.1. (Spherical) triangle groups. We follow [CV19, Section 2]. For
more on this topic see [Mag74, Chapter II].

Let a, b, c > 1 be positive integers. We say that the triple (a, b, c) is
spherical, Euclidean, or hyperbolic according as the quantity

χ(a, b, c) := 1
a
+ 1

b
+ 1

c
− 1

is positive, zero, or negative.

Definition 2.1. Given integers a, b, c > 1, the extended triangle group
△(a, b, c) is defined as the group generated by elements δ0, δ1, δ∞,−1,
with −1 central in △̄(a, b, c), subject to the relations (−1)2 = 1 and

(10) δa0 = δb1 = δc∞ = δ0δ1δ∞ = −1.

Define the triangle group △̄(a, b, c) as the quotient of △(a, b, c) by {±1}.

The spherical triangle groups are all finite groups. Moreover, they are
all finite subgroups of PGL2(Q̄). These were classified by Klein more
than a century ago. By [CV19, Remark 2.2], reordering the signature
(a, b, c) to be nondecreasing a ⩽ b ⩽ c does not affect the isomorphism
class of △̄(a, b, c).
• For the dihedral signatures (a, b, c) = (2, 2, c) with c ⩾ 2, the triangle

groups △̄(2, 2, c) are isomorphic to the dihedral group Dc with 2c
elements. In particular, △̄(2, 2, 3) is isomorphic to the symmetric
group in three letters S3. The group △̄(2, 2, 2) is isomorphic to the
Klein four group C2 × C2.

• For the tetrahedral signature (a, b, c) = (2, 3, 3), the triangle group
△̄(2, 3, 3) is isomorphic to A4; the group of rigid motions if the tetra-
hedron.

• For the octahedral signature (a, b, c) = (2, 3, 4), the triangle group
△̄(2, 3, 4) is isomorphic to S4; the group of rigid motions of the oc-
tahedron.
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• For the icosahedral signature (a, b, c) = (2, 3, 5), the triangle group
△̄(2, 3, 5) is isomorphic to A5; the group of rigid motions of the
icosahedron.

Table 2. Spherical triangle groups.

(a, b, c) △̄(a, b, c) χ(a, b, c)

(2, 2, c) Dc 1/c

(2, 3, 3) A4 1/6

(2, 3, 4) S4 1/12

(2, 3, 5) A5 1/30

2.2. (Spherical) Belyi maps. By curve we mean a separated scheme
of finite type over a field of dimension one. We say that a curve is nice
if it is smooth, projective, and geometrically irreducible.

Definition 2.2. Let Zk be a nice curve defined over a perfect field k.
A k-Belyi map is a finite k-morphism ϕ : Zk → P1

k that is unramified
outside {0, 1,∞} ⊂ P1(k).

Remark 2.3. These remarkable covers of the projective line are named
after the Ukrainian mathematician G. V. Belyi , who famously proved
that a complex algebraic curve can be defined over a number field if
and only if it admits a C-Belyi map [Bel79, Bel02]. For this reason, it is
customary to require that k ⊂ C to use the term Belyi map. We ignore
this convention, and allow k to be perfect of positive characteristic.

Definition 2.4. Let ϕ : Zk → P1
k be a k-Belyi map with automor-

phism k-group scheme Aut(ϕ). We say that ϕ is geometrically Galois
if the extension of function fields k(Zk̄) ⊃ k(P1

k̄
) is Galois, with Galois

group denoted by Gal(ϕ). Equivalently, ϕ is geometrically Galois if
Aut(ϕ)(k̄) = Aut(ϕk̄) acts transitively on the fibers. This is the case
if and only if Aut(ϕk̄) ∼= Gal(ϕ).

Remark 2.5. If ϕ : Zk → P1
k is a geometrically Galois k-Belyi map, for

any Q ∈ P1(k)−{0, 1,∞}, the fiber ϕ−1(Q) := Z×kQ is a Gal(ϕ)-torsor
over Spec k.
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Definition 2.6. The signature of a geometrically Galois k-Belyi map
ϕ : Zk → P1

k is the triple (e0, e1, e∞) where eP is the ramification index
eϕ(z) of any critical point z ∈ Zk with critical value P ∈ {0, 1,∞}.
The Euler characteristic of ϕ is the quantity
(11) χ(ϕ) := 1

e0
+ 1

e1
+ 1

e∞
− 1.

As a consequence of the Riemann Existence Theorem, there exist
Galois Belyi maps of any spherical signature. See [DG95, Proposition
3.1] and [Poo05, Lemma 2.5] for a proof of the following proposition.
Proposition 2.7. For any positive integers a, b, c > 1, there exists a
number field K and a geometrically Galois K-Belyi map ϕ : ZK → P1

K

of signature (e0, e1, e∞) = (a, b, c). Let g be the genus of ZK, and G be
the Galois group of ϕ. Then 2− 2g = (deg ϕ) · χ(ϕ). In particular,

(i) If χ(ϕ) > 0, then g = 0 and deg ϕ = #G = 2/χ(ϕ).
(ii) If χ(ϕ) = 0, then g = 1.
(iii) If χ(ϕ) < 0, then g > 1.
A crucial fact that we will need later is that for each one of the spher-

ical signatures, there exists a geometrically Galois Belyi defined over
Q. The reader may find several examples in the Belyi maps LMFDB
beta database [LMF25]. The maps presented in Table 2 are adapted
from the parametrizations found in [Coh07, Chapter 14]. The original
sources are [Beu98] and [Edw04].

Table 3. Examples of geometrically Galois Q-Belyi
maps for the spherical signatures.

(a, b, c) △̄(a, b, c) Example

(2, 2, c) Dc
(sc+tc)2

4(st)c

(2, 3, 3) A4
(s2−2st−2t2)2(s4+2s3t+6s2t2−4st3+4t4)2

26t3(s−t)3(s2+st+t2)3

(2, 3, 4) S4
−(4st)2(s2−3t2)2(s4+6s2t2+81t4)2(3s4+2s2t2+3t4)2

(s2+3t2)4(s4−18s2t2+9t4)4

(2, 3, 5) A5
−(34s10+28t10)2(38s20−27310s15t5−218310s10t10+212310s5t15+216t20)2

(12st)5(81s10−1584s5t5−256t10)5

3. Counting rational points the image of a rational
function

The results presented in this section are undoubtedly well known
([Ser97, p. 133], [HS00, Theorem B.6.1]); however, authors often ignore

https://beta.lmfdb.org/Belyi/
https://beta.lmfdb.org/Belyi/
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the leading constants we seek. For completeness, we provide full proofs,
making the leading constants explicit.

Situation 3.1. Throughout the remainder of this section, we shall
work with the following notations.
• Let ϕ : P1

Q → P1
Q be a nonconstant Q-morphism with d := deg(ϕ).

• Let ϕ0, ϕ∞ ∈ Z[s, t] be a choice of relatively prime homogeneous
polynomials of degree d such that ϕ is given by

ϕ(s : t) = (ϕ0(s, t) : ϕ∞(s, t)).

• Let V := A2 − 0 be the punctured cone over P1
Z. We identify V(Z)

with the set {(s, t) ∈ Z2 : gcd(s, t) = 1}. The map V(Z) → P1(Q)
given by (s, t) 7→ (s : t) is two-to-one.

• Denote by ϕ̃ : A2 → A2 the lift ϕ̃(s, t) := (ϕ0(s, t), ϕ∞(s, t)) of ϕ.
• On P1(Q) = P1(Z), Ht: P1(Q) → Z⩾0 is the usual multiplicative

height, given by Ht(Q) = max {| num(Q)|, | den(Q)|}.
• Ω(ϕ) ⊂ P1(Q) is the image of ϕ(Q) : P1(Q) → P1(Q).
• For any Ω ⊂ P1(Q) and for every h > 0, Ω⩽h is the finite subset of Ω

consisting of those points Q with Ht(Q) ⩽ h. The counting function
of Ω ⊂ P1(Q) is denoted N(Ω;h) := #Ω⩽h.

• We denote by Aut(ϕ) the group of Q-automorphisms of the map ϕ.

The main result of this section is the following.

Proposition 3.2. We have N(Ω(ϕ);h) ≍ h2/d as h → ∞. More
precisely, there exists an explicitly computable constant δ(ϕ) > 0 such
that

1
d
· δ(ϕ) · h2/d ⩽ N(Ω(ϕ));h) ⩽ δ(ϕ) · h2/d, as h → ∞.

The constant δ(ϕ) is described in Equation (19).

In the special case where ϕ is geometrically Galois, we can keep
track of the exact number of Q-rational points on each fiber ϕ−1(Q) :=
P1×QQ, for all but finitely many Q ∈ Ω(ϕ). This allows us to promote
the asymptotic bounds of Proposition 3.2 to an asymptotic count.

Corollary 3.3. Suppose that ϕ is geometrically Galois. Then, there
exists an explicitly computable constant κ(ϕ) ∈ R>0 such that for every
ε > 0,

N(Ω(ϕ);h) = κ(ϕ) · h2/d +O
(
h1/d+ε

)
as h → ∞. Moreover, the leading constant is given by

κ(ϕ) = δ(ϕ)/#Aut(ϕ),

and the implied constant depends on ϕ and ε.
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3.1. The primitivity defect set. Given (s, t) ∈ V(Z), it does not
follow that ϕ̃(s, t) = (ϕ0(s, t), ϕ∞(s, t)) ∈ V(Z). For example, consider
the map

ϕ̃(s, t) = ((s2 − t2)2, (s2 + t2)2)

arising in the parametrization of Pythagorean triples. When s and t
have the same parity, gcd ϕ̃(s, t) = 4. In general, ϕ̃ : V(Z) → Z2 and
we have the following commutative diagram of sets.

P1(Q) V(Z)

Z2

P1(Q) V(Z)

ϕ

ϕ̃

·(1/ gcd)

Define the primitivity defect set of ϕ by

(12) D(ϕ) :=
{
gcd ϕ̃(s, t) : (s, t) ∈ V(Z)

}
.

The set D(ϕ) is finite. Indeed, let R(ϕ) ∈ Z denote the resultant of the
homogeneous polynomials ϕ0 and ϕ∞. Then, every primitivity defect
divides R(ϕ).

Lemma 3.4. If e ∈ D(ϕ), then e | R(ϕ).

Proof. Let e ∈ D(ϕ). By definition, there exists (s, t) ∈ V(Z) such
that gcd ϕ̃(s, t) = e. In particular, we can find u, v ∈ Z such that
u · ϕ0(s, t) + v · ϕ∞(s, t) = e. By standard properties of the resultant,
we can find polynomials g0, g∞ ∈ Z[s, t] such that

R(ϕ) = g0(s, t) · ϕ0(s, t) + g∞(s, t) · ϕ∞(s, t).

By evaluating the expression above at (s, t) = (s, t), we see that R(ϕ)
is a multiple of e. □

For each e ∈ D(ϕ), consider the set

V(Z)e :=
{
(s, t) ∈ V(Z) : gcd ϕ̃(s, t) = e

}
.

We have a partition

(13) V(Z) =
⊔

e∈D(ϕ)

V(Z)e.

For each e ∈ D(ϕ), consider the subsets

Z · V(Z)e := {(ns, nt) : n ∈ Z, (s, t) ∈ V(Z)e} ⊂ Z2.



COUNTING PRIMITIVE SOLUTIONS 13

From the partition Figure 1 of primitive points, we obtain the partition

(14) Z2 =
⊔

e∈D(ϕ)

Z · V(Z)e.

Figure 1. Partition V(Z) = V(Z)1⊔V(Z)4 with respect
to the Galois map ϕ(s : t) = ((s2− t2)2 : (s2+ t2)2), with
primitivity defect set D(ϕ) = {1, 4}.

3.2. Proof of Proposition 3.2 and Corollary 3.3. We start with
the proof of the asymptotic bounds. We will abbreviate

max ϕ̃(s, t) := max {|ϕ0(s, t)|, |ϕ∞(s, t)|} .

Proof of Proposition 3.2. We may apply the principle of Lipschitz [Dav51]
to obtain

M̃(h) := #
{
(s, t) ∈ Z2 : max ϕ̃(s, t) ⩽ h

}
= vol(R1) · h2/d +O

(
h1/d

)
,(15)

where vol (R1) is the Lebesgue measure of the compact region R1 in
R2 given by max {|ϕ0(s, t)|, |ϕ∞(s, t)|} ⩽ 1.

In light of the partition Equation (14), we see that for each e ∈ D(ϕ)
the set Z·V(Z)e has a density δe ∈ [0, 1], and

∑
e∈D(ϕ) δe = 1. Moreover,

if we define

M̃e(h) := #
{
(s, t) ∈ Z · V(Z)e : max ϕ̃(s, t) ⩽ h

}
,

then M̃e(h) = δe · M̃(h) +O(1).
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We apply a standard Möbius sieve to Equation (15) to obtain, for
every ε > 0, the asymptotic

Ñ(h) := #
{
(s, t) ∈ V(Z) : max ϕ̃(s, t) ⩽ h

}
=

6

π2
· vol(R1) · h2/d +Oe,ε

(
h1/d+ε

)
.(16)

Moreover, if we define

Ñe(h) := #
{
(s, t) ∈ V(Z)e : max ϕ̃(s, t) ⩽ h

}
,

then Ñe(h) = δe · Ñ(h) +O(1). Consider the counting function

N(h) := #
{
(s : t) ∈ P1(Q) : Ht(ϕ(s : t)) ⩽ h

}
,

which counts all Q-rational points on P1 with respect to the height Ht
pulled back by ϕ. In general, we have the inequalities
(17) 1

d
·N(h) ⩽ N(Ω(ϕ);h) ⩽ N(h),

which arise from the fact that a point Q = ϕ(P ) ∈ Ω(ϕ) has at least
one rational point in the fiber ϕ−1(Q), and at most d = deg ϕ.

To conclude, we relate N(h) to the counting functions Ñe(h). By
the definition of Ht, we see that

N(h) =
1

2

∑
e∈D(ϕ)

Ñe(eh)

=
1

2

∑
e∈D(ϕ)

(
6

π2
· vol(R1) · δe · (eh)2/d +O

(
(eh)1/d+ε

))

=
3

π2
vol(R1)

 ∑
e∈D(ϕ)

δe · e2/d
 · h2/d +O

(
h1/d+ε

)
.(18)

In particular, the leading constant is

(19) δ(ϕ) =
3

π2
vol(R1)

 ∑
e∈D(ϕ)

δe · e2/d
 .

□

We will use Proposition 3.2 in the special case of a geometrically
Galois Q-Belyi map ϕ.

Proof of Corollary 3.3. Suppose that ϕ is geometrically Galois, with
Galois group Gal(ϕ) = Aut(ϕQ̄). Then, Gal(ϕ) acts transitively and
without stabilizers on the fibers of unramified points Q ∈ P1(Q). Since
there are finitely many points that ramify, they do not influence the



COUNTING PRIMITIVE SOLUTIONS 15

asymptotic count, so we ignore them. We claim that for every Q ∈
ϕ(P1(Q)) = Ω(ϕ), we have that

#ϕ−1(Q)(Q) = #Aut(ϕ).

Indeed Aut(ϕ) = Aut(ϕQ̄)
GalQ̄ , and for every P ∈ ϕ−1(Q)(Q) and

γ ∈ Aut(ϕ), we have that γ(P ) ∈ ϕ−1(Q)(Q) as well. On the other
hand, given P, P ′ ∈ ϕ−1(Q)(Q), there exists γ ∈ Aut(ϕQ̄) such that
γ(P ′) = P . For any σ ∈ GalQ, we see that γσ(P ′) = γ(σ−1P ′) = γ(P ′).
Therefore, γ−1γσ stabilizes P ′, which implies that γ−1γσ = 1, and
therefore γ ∈ Aut(ϕ). It follows that Nϕ(h) = #Aut(ϕ) · N(Ω(ϕ);h),
and the proof is complete. In particular, the leading constant is

(20) κ(ϕ) =
3

π2

vol(R1)

#Aut(ϕ)

 ∑
e∈D(ϕ)

δe · e2/d
 .

□

Example 3.5 (Pythagorean constant). In Section 1.4, we concluded
that for F : x2 + y2 − z2 = 0, we have the identity Ω(F ) = Ω(ϕ), where
ϕ : Z := ProjQ[x, y, z]/(x2 + y2 − z2) → P1

Q is the Galois Belyi map
(x : y : z) 7→ (x2 : z2). Take the isomorphism P1 ∼= Z given by
(s : t) 7→ (s2 − t2 : 2st : s2 + t2), and rename ϕ to be the composition
P1 ∼= Z → P1, (s : t) 7→ ((s2 − t2)2 : (s2 + t2)2).
• Since max {|s2 − t2|2, |s2 + t2|2} = (s2 + t2)2, the region R1 is the

unit disc, and vol(R1) = π.
• The primitivity defect set D(ϕ) = {1, 4}. The densities are δ1 = 2/3

and δ4 = 1/3.
Putting this data into Equation (19), we see that

δ(ϕ) =
3

π2
· π

(
2

3
+

42/4

3

)
=

4

π
.

Finally, since Aut(ϕ) ∼= G ∼= C2 × C2, we obtain κ(ϕ) = δ(ϕ)/4 = 1
π
.

4. Proof of main results

Situation 4.1. We adopt the following notation for the rest of this
section.
• Let (a, b, c) be a spherical signature (see Table 2), we do not assume

that a ⩽ b ⩽ c.
• Let S denote a finite set of primes, and R = Z[S−1].
• Recall that H1

S(Q, G) denotes the Galois cohomology pointed set
which classifies G-torsors over SpecQ unramified outside of S.
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• For any Ω ⊂ P1(Q), and any h > 0, we have the counting function
N(Ω;h) defined in Situation 3.1.

Our proof follows the guidelines of the method of Fermat descent, as
presented in [AP25]. It consists on three steps: covering, twisting, and
sieving.

4.1. Covering. The covering is a geometrically Galois Q-Belyi map
ϕ : P1

Q → P1
Q with signature (a, b, c). For instance we can always start

with one of the maps described by the rational functions in Table 3 and,
since we are not assuming that a ⩽ b ⩽ c, compose with an appropriate
permutation γ ∈ PGL2(Q) of {0, 1,∞}.

4.2. Twisting. By [AP25, Lemma 3.23], there exists a finite set of
primes S for which the map ϕ admits an R-model Φ: P1

R → P1
R such

that P1(a, b, c)R ∼= [P1
R/Aut(Φ)]. Descent theory gives the partition

P1(a, b, c)⟨R⟩ =
⊔

τ∈H1(R,Aut(Φ))

Φτ (P1
τ (R))

=
⊔

τ∈H1
S(Q,Gal(ϕ))

ϕτ (P1
τ (Q)).

Here, H1(R,Aut(Φ)) denotes the fppf Čech cohomology pointed set. It
is in bijection with isomorphism classes of fppf Aut(Φ)-torsor schemes
T → SpecR. Restriction to the generic fiber induces an isomorphism

H1(R,Aut(Φ)) ∼= H1
S(Q,Gal(ϕ))

of pointed sets. Note that Gal(ϕ) ∼= Aut(ϕ)(Q̄) = Aut(ϕQ̄), so the
action of the absolute Galois group GalQ is the natural one. In general,
H1

S(Q,Gal(ϕ)) is only a pointed set and not a group, since Gal(ϕ) ∼=
△̄(a, b, c) as abstract groups, and the only abelian spherical triangle
group is △̄(2, 2, 2) ∼= C2 × C2. Crucially, the set H1

S(Q,Gal(ϕ)) is
finite, and classifies twists of the Belyi map ϕ. It is worth noting that
in some cases, the source curve of a twist ϕτ : P1

τ → P1 might be a
pointless conic. Nevertheless, since the equations

x2 + y2 − zc = 0, (c ⩾ 2)

x2 + y3 − z3 = 0,

x2 + y3 − z4 = 0,

x2 + y3 − z5 = 0,

all have primitive integral solutions, we know that Ω(a, b, c) ̸= ∅, and
there will always be at least one twist for which P1

τ (Q) ̸= ∅.
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4.3. Sieving. Combining the partition above with Corollary 3.3, we
obtain

N(ΩS(a, b, c);h) =
∑
τ

N(Ω(ϕτ );h),

where the sum ranges over all the τ ∈ H1
S(Q,Gal(ϕ)) for which P1

τ is
isomorphic to P1

Q. To sieve out the excess of elements in P1(a, b, c)⟨R⟩
not corresponding to points in Ω(a, b, c) = P1(a, b, c)⟨Z⟩, we show that
we can restrict to certain subsets T (F ) ⊂ T (a, b, c) ⊂ H1

S(Q,Gal(ϕ)) to
cover all of Ω(F ) and Ω(a, b, c). The proofs of both Theorem 1.2 and
Theorem 1.3 (in the special case of simplified equations (Definition 1.5))
will follow immediately from the following lemma.

Lemma 4.2. Fix a possibly empty subset T ⊂ S. Take a T -simplified
Fermat equation F : Axa+Byb+Czc = 0. Then, there is a finite subset
T (F ) ⊆ H1

S(Q,Gal(ϕ)) such that

(21) Ω(F ) =
⊔

τ∈T (F )

ϕτ (P1
τ (Q)).

Moreover, defining T (a, b, c) as the disjoint union of the sets T (F ), as
F ranges over all ∅-simplified Fermat equations of signature (a, b, c),
we have

(22) Ω(a, b, c) =
⊔

τ∈T (a,b,c)

ϕτ (P1
τ (Q)).

Proof. Any geometrically Galois Q-Belyi map ϕ : P1
Q → P1

Q of signature
(a, b, c) is given by a rational function

ϕ0

ϕ∞
= 1 +

ϕ1

ϕ∞
∈ k(P1

Q),

where
(i) ϕ0, ϕ1, ϕ∞ ∈ Z[s, t] are homogeneous of degree #△̄(a, b, c),
(ii) gcd(ϕ0, ϕ∞) = gcd(ϕ1, ϕ∞) = 1, and
(iii) we can write

ϕ0(s, t) = C0 ·X(s, t)a,

ϕ1(s, t) = C1 · Y (s, t)b,

ϕ∞(s, t) = C∞ · Z(s, t)c,

for unique polynomials X, Y, Z ∈ Z[s, t], and a unique triple
(C0, C1, C∞) of S(ϕ)-simplified Fermat coefficients, where S(ϕ)
is an explicit set of bad primes.
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We denote this triple by sfc(ϕ). Observe that for any Q ∈ P1(Q), we
have that sfc(ϕ) = sfc(ϕ(Q)).

Returning to the situation of this section, to each cohomology class
τ we can associate the S-simplified Fermat coefficient triple sfc(ϕτ ).
If F is T -simplified, then it is also S-simplified. Moreover, for every
primitive integral solution (x, y, z) to F , the point j(x, y, z) ∈ P1(Q) is
in ΩS(a, b, c). Define

T (F ) :=
{
τ ∈ H1

S(Q,Gal(ϕ)) : sfc(ϕτ ) = (A,B,C)
}
.

□

To finish the proof of Theorem 1.3, we must consider the case of
non-simple equations. To guide our intuition, consider the equation
F ′ : 25x2+y2 = z2. Our strategy is to use the simplification F : x2+y2 =
z2 to deduce the asymptotic result for F ′ from that of F . In this case,
the Q-isomorphism of nice curves C → C ′, (x : y : z) 7→ (x/5 : y : z)
enables this translation. The idea is that the congruence condition
x ≡ 0mod 5 cuts out a positive proportion of the primitive integral
solutions to the Pythagorean equation, and only the constant term in
the asymptotic will change.

Start with a non-simple equation F ′ : A′xa+B′yb+C ′zc = 0. Without
loss of generality, we may assume that gcd(A′, B′, C ′) = 1. In this case,
we can write

A′ = A · Aa
0, B′ = B ·Bb

1, C ′ = C · Cc
∞,

to obtain a T -simplified coefficient triple (A,B,C), where T is the set of
primes dividing A′·B′·C ′. The Fermat equation F : Axa+Byb+Czc = 0
is the simplification of F ′. From Lemma 4.2, we have a partition

(23) Ω(F ) =
⊔

τ∈T (F )

Ω(ϕτ ),

where each ϕτ is a geometrically Galois Q-Belyi maps P1
Q → P1

Q of
signature (a, b, c). Let ϕ be one of these maps. We have seen that ϕ
corresponds to a rational function

ϕ =
A ·X(s, t)a

C · Z(s, t)c
= 1 +

B · Y (s, t)b

C · Z(s, t)c
.

To conclude, we use a clever argument of Beukers [Beu98, Proof of
Theorem 1.5]. Consider the polynomial map

(24) α : Q2 → Q3, (s, t) 7→
(
X(s, t)

A0

,
Y (s, t)

B1

,
Z(s, t)

C∞

)
.
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We use α to define a lattice of rank two generated by the points whose
image is integral

Λ(α) := SpanZ
{
(s, t) ∈ Q2 : α(s, t) ∈ Z3

}
.

Choose an integral basis {α⃗1, α⃗2} for Λ(α), and define

ϕ′ =
A ·X(sα⃗1 + tα⃗2)

a

C · Z(sα⃗1 + tα⃗2)c
= 1 +

B · Y (sα⃗1 + tα⃗2)
b

C · Z(sα⃗1 + tα⃗2)c
.

Applying this construction to every ϕτ appearing in Equation (23), we
obtain the partition

Ω(F ′) =
⊔

τ∈T (F )

Ω(ϕ′
τ ),

from which we conclude the proof.
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