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Abstract. We consider three isogeny invariants of abelian varieties over finite fields: the Galois

group, Newton polygon, and the angle rank. Motivated by work of Dupuy, Kedlaya, and Zureick-

Brown, we define a new invariant called the weighted permutation representation which encompasses

all three of these invariants and use it to study the subtle relationships between them. We use this

permutation representation to classify the triples of invariants that occur for abelian surfaces and

simple abelian threefolds.
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1. Introduction

The purpose of this article is to study the surprisingly subtle interactions between three isogeny

invariants of abelian varieties over finite fields. We analyze which triples of invariants may occur and

what restrictions they impose on the abelian variety in question. The interaction of these invariants

is discussed in a letter from Serre to Ribet [Ser89, pp. 6] and has gained renewed interest following

the publication of the database of abelian varieties over finite fields in the LMFDB [DKRV21b].

The availability of this data has demonstrated that the interaction between these invariants is more

intricate than initially thought [DKRV21a], prompting the development of more refined invariants to

better understand these relationships [DKZ24]. This article makes progress towards that goal. Even

though this subject is interesting in its own right, it has applications to the Tate conjecture [Zar15,

Zar22], monodromy groups of abelian varieties over number fields [Zyw22], Frobenius distributions

[AS10, ABS24], and prime number races and Chebyshev biases in the context of function fields

[BDKL24].
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By the Honda–Tate theorem [Tat66, Hon68, Tat71], the isogeny class of an abelian variety A is

determined by its Frobenius polynomial, which is the characteristic polynomial of the Frobenius

endomorphism acting on the ℓ-adic Tate module of A (where ℓ is a prime number which is not

equal to the characteristic of the base field Fq). All of our invariants are derived from the Frobenius

polynomial; the first invariant is the Newton polygon of the Frobenius polynomial, which determines

the p-adic valuations of the roots, the second invariant is the angle rank, which measures the

nontrivial multiplicative relations between the roots of the Frobenius polynomial, and finally, we

have the Galois group of the Frobenius polynomial as our third invariant. We classify triples of

invariants that occur for abelian varieties of dimension ≤ 3; the dimension 3 case already exhibits

some subtleties that should be expected in general.

In [DKZ24], the authors noticed that the Galois group, Newton polygon, and angle rank are not

independent. The Galois group acts on the p-adic valuations of the roots (we visualize each root as

a ball of radius proportional to its p-adic valuation) and this “weighted permutation representation”

determines the Galois group, Newton polygon, and angle rank; see Definition 3.4. However, this

does not imply that the Galois group and Newton polygon determine the angle rank. For example,

the isogeny classes of abelian threefolds over F2 with LMFDB [LMF24] labels 3.2.ac_a_d and

3.2.a_a_ad have the same Newton polygon and Galois group, but different angle ranks. This

example illustrates the necessity of considering more than just the isomorphism class of the Galois

group.

The authors of [DKZ24] defined the Newton hyperplane representation of a geometrically simple

abelian variety to encode this information. In this paper, we reinterpret the Newton hyperplane

representation in terms of a weighted permutation representation. Moreover, we associate to every

abelian variety A/Fq a weighted permutation representation. We then classify weighted permuta-

tion representations for abelian surfaces, and simple abelian threefolds.

1.1. Statement of main results. Let A be a g-dimensional abelian variety over a finite field Fq

where q is a power of a prime number p. The Frobenius polynomial of A

PA(T ) := det(T − Frobq | TℓA)

is the characteristic polynomial of the Frobenius endomorphism acting on the ℓ-adic Tate module

TℓA. We define:

• the Galois group of A, which we denote GA, to be the Galois group of the radical hA(T ) of

the Frobenius polynomial PA(T );

• the q-Newton polygon of A to be the Newton polygon of the Frobenius polynomial PA(T )

with respect to the p-adic valuation ν on Qp normalised so that ν(q) = 1; and

• the angle rank of A, which we denote δA, to be dimQ UA⊗Q where UA ⊂ Q
×
is the subgroup

generated by α/
√
q where α runs over all roots of PA(T ).

Our main result is the classification of which triples of Galois group, Newton polygon, and angle

rank occur for abelian surfaces and simple abelian threefolds. We do this by classifying weighted

permutation representations (as defined in Section 3.1) of abelian surfaces and simple abelian
2
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Simple abelian surface over Fq

(B)(A) (C)

δA = 0δA = 2 δA = 1 δA = 2

C2 ≀ S2 C4 V4 C2

Figure 1.1. Possible isomorphism classes of Galois groups of simple abelian sur-
faces in terms of their Newton polygon, and angle rank δA.

threefolds. (The case g = 1 is easy and we discuss it in Section 4). The case of surfaces can be

found in Theorem 5.1 and the case of threefolds can be found in Theorem 6.1.

The flowcharts in Figures 1.1–1.3 distill information from the tables in our main theorems.

The purpose of these flowcharts is to serve as a “user’s guide” to the tables in Theorem 5.1 and

Theorem 6.1; in particular, if one has in hand an abelian surface or threefold, then the flowchart

rules out certain Galois groups.

Corollary 1.1. If A is an abelian surface, then the possible isomorphism classes of the Galois

group GA are determined by Figure 1.1 in the simple case, and by Figure 1.2 in the nonsimple case.

Moreover, every possibility occurs.

Corollary 1.2. If A is a simple abelian threefold, then the possible isomorphism classes of the

Galois group GA are determined by Figure 1.3. Moreover, every possibility occurs.

1.2. Outline. In Section 2 we introduce background and notation used throughout this paper. A

reader familiar with abelian varieties may choose to skip directly to Section 3, where we introduce

a key tool in our paper, the weighted permutation representation. In Section 4 we warm up by

classifying permutation representations of elliptic curves. In Section 5 and Section 6 we classify

weighted permutation representations of abelian surfaces and simple abelian threefolds respectively.

We finish by listing further inverse Galois questions in Section 7.

The code associated to this article is written in Magma [BCP97] and is publically available from

the GitHub repository [AFV].
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Nonsimple abelian surface E1 × E2 over Fq

(B)(A) (C)

δA = 1 δA = 0δA = 2 δA = 1

V4 C2 C1

Figure 1.2. Possible isomorphism classes of Galois groups of simple abelian sur-
faces in terms of their Newton polygon, and angle rank δA.

Simple abelian threefold over Fq

(C)(B)(A) (D) (E)

δA = 3 δA = 1 δA = 3 δA = 2 δA = 3 δA = 3 δA = 1 δA = 0

C2 ≀ S3 C2 ≀ C3 D6 C6

Figure 1.3. Possible isomorphism classes of Galois groups of simple abelian three-
folds, in terms of their Newton polygon and angle rank δA.
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2. Background and notation

2.1. Honda–Tate theory. Let A/Fq be an abelian variety. A celebrated theorem of Honda and

Tate classifies isogeny classes of abelian varieties over finite fields. Let g := dim(A) > 0 and recall

that PA(T ) ∈ Z[T ] is the characteristic polynomial of Frobenius.

The roots of PA(T ) have absolute value
√
q in all their complex embeddings; an algebraic integer

with this property is called q-Weil number . A q-Weil polynomial is a monic integral polynomial

whose roots are all q-Weil numbers. Fix an algebraic closure Q of Q inside of C, and an embedding

Q ↪→ Qp. We write ν for the p-adic valuation on Qp, normalized so that ν(q) = 1.

The statement below is the one presented in [Poo06, Theorem 4.2.12].

Theorem 2.1 (Honda–Tate Theorem).

(1) If A is a simple abelian variety, then PA(T ) = hA(T )
e for some irreducible polynomial

hA(T ) ∈ Z[T ] and some e ≥ 1.

(2) There is a bijection between isogeny classes of simple abelian varieties over Fq and conjugacy

classes of q-Weil numbers.

(3) Given Gal(Q/Q)-conjugacy class of q-Weil numbers, let hA(T ) be the minimal polynomial

of any element of this conjugacy class. Then there exists a unique integer eA := e ≥ 1 such

that hA(T )
e = PA(T ) for some simple abelian variety A over Fq. Moreover, e is the smallest

positive integer such that:

(a) hA(0)
e > 0, and

(b) For each monic Qp-irreducible factor g(T ) ∈ Qp[T ] of hA(T ), the valuation ν(g(0)e)

is in Z.

The polynomial hA(T ) is the minimal polynomial of the q-Frobenius endomorphism of A. When

PA(T ) is totally complex (i.e., has no real roots), the degree of hA(T ) is equal to 2d for some

positive integer d.

In general, the isogeny factorization of A yields a factorization of the Frobenius polynomial. In

particular, by the Honda–Tate theorem, two abelian varieties A and B are isogenous if and only if

PA(T ) is equal to PB(T ).

This observation is sufficient to understand the classification of our three isogeny invariants in

the case of elliptic curves (see Section 4). We now proceed to give more background that will be

useful for higher dimensional abelian varieties.

We will use the following as a running example throughout the article to consolidate our defini-

tions and notations. This example appears in [Shi82, Example 6.1] and [Zyw22, Example 1.7] (see

also [GGL24, Example 4.2.9]).
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Example 2.2 (Shioda’s example). Let q = p = 19, and let A be the Jacobian of the hyperelliptic

curve C with affine equation y2 = x9 − 1, defined over the field F19. The curve C has genus g = 4

and therefore A is an abelian fourfold. By calculating #C(F19r) for r = 1, 2, 3, 4, we are able to

estimate the zeta function of C to enough precision to recover the Frobenius polynomial PA(T ). It

is given by:

PA(T ) = T 8 + 8T 7 + 28T 6 + 8T 5 − 170T 4 + 152T 3 + 10108T 2 + 54872T + 130321.

This polynomial factors as PA(T ) = PE(T )PB(T ), where E is the elliptic curve y2 = x3 − 1 in

the isogeny class 1.19.i with Frobenius polynomial PE(T ) = T 2 + 8T + 19, and B is an abelian

threefold in the isogeny class 3.19.a_j_acm with Frobenius polynomial PB(T ) = T 6+9T 4−64T 3+

171T 2 + 6859. By the Honda–Tate theorem A is isogenous to the product E ×B.

2.2. Newton polygons of Frobenius polynomials. Let A be a g-dimensional abelian variety

over Fq. At this moment, we do not assume that A is simple.

Definition 2.3 (q-Newton polygon). The q-Newton polygon of A is the ν-adic Newton polygon of

PA(T ). More precisely, if PA(T ) =
∑2g

j=0 a2g−jT
j , then the q-Newton polygon of A is the lower

convex hull of the finite set

{(j, ν(aj)) : 0 ≤ j ≤ 2g, and aj ̸= 0} ⊂ R2.

Example 2.4. Continuing with Example 2.2, we note that both E and B are ordinary varieties.

Since A ∼ E × B, the Newton polygon of A is also ordinary, and it is obtained by concatenating

those of E and B. Alternatively, one can notice that −170 (the middle coefficient of PA(T )) is not

divisible by p = 19.

2.3. Angle rank of Frobenius polynomials. We recall the following definition from [DKRV21b,

DKZ24, ABS24].

Definition 2.5. Consider the multiplicative subgroup UA ⊂ Q
×

generated by the normalized

Frobenius eigenvalues u := α/
√
q where α ranges over the roots of hA(T ). The angle rank of A is

denoted δA and is defined to be dimension of UA ⊗Q.

2.4. Galois groups of Frobenius polynomials. Given an abelian variety A, denote by RA the

set of roots, without multiplicity, of the Frobenius polynomial PA(T ).

Definition 2.6 (Galois group). The Galois group of A is the Galois group of the minimal poly-

nomial of Frobenius hA(T ). Equivalently, GA is the largest quotient of Gal(Q/Q) over which the

permutation action on RA factors.

Definition 2.7. In the case that A is simple, we will denote by KA the center of the endomorphism

algebra End(A)⊗Q. We have that KA
∼= Q[T ]/(hA(T )) is a number field.

For “most” abelian varieties the polynomial PA(T ) is totally complex (i.e., has no real roots),

and KA is a complex multiplication (CM) number field. See [Dod84] for some background on Galois

groups of CM number fields, and [DKZ24, Section 2.2] for a discussion on Galois groups of q-Weil

polynomials.
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Example 2.8. Continuing with Example 2.2, we have that the splitting field of PA(T ) is the degree

6 field Q(ζ9), where ζ9 is a primitive 9th-root of unity. This already implies that the 8 roots of

PA(T ) are algebraically dependent. Recalling that A ∼ E×B, observe that KE = Q(
√
−3), which

is contained in KB = Q(ζ9). Note that GA is a permutation group acting on the 8 element set RA.

But as abstract groups, GA
∼= Gal(Q(ζ9)/Q) ∼= C6.

Denote by RE =
{
η, 19η−1

}
and RB =

{
α, β, γ, 19α−1, 19β−1, 19γ−1

}
the sets of roots of PE(T )

and PB(T ) respectively. For an appropriate such labelling, we have

(2.1) η =
α · β · γ

19
.

In Example 3.9 that the Q-vector space UA ⊗Q has dimension 3, i.e., δA = 3.

Instead of viewing GA as a permutation subgroup of Sn for n = #RA, it will be convenient to

use a “CM specific” permutation representation.

2.5. The group of signed permutations. We now describe the abstract group which Galois

groups of totally complex q-Weil numbers are naturally contained in. First note that when hA(T )

is totally complex of degree 2d and the roots of hA(T ) come in complex conjugate pairs. Moreover,

the action of the Galois group GA respects this partition.

Let X2d be the set consisting of the symbols 1, 1̄, . . . , d, d̄. Define W2d to be the subgroup of

Sym(X2d) which preserves the partition

X2d = {1, 1̄} ⊔ · · · ⊔
{
d, d̄

}
.

Upon a choice of labelling of roots, the Galois group of hA(T ) may naturally be embedded in W2d.

We refer to the element ι := (11̄) . . . (dd̄) as complex conjugation.

2.5.1. Subgroup labelling. We now briefly describe our naming conventions for subgroups of W2d. A

group H is denoted G.d.t.letter.k if it is isomorphic to G, contained in W2d, and acts transitively

on X2d. The W2d conjugacy class is indexed by letter, and the groups in that conjugacy class are

indexed by the tiebreaker k (a positive integer). The use of nt instead of t indicates that H acts

intransitively on X2d. For example, the group C2.4.nt.c.1 refers to a group which is isomorphic

to C2, contained in W4, and is intransitive. The label c refers to the conjugacy class in W4 and the

index 1 means that it is the first listed in its conjugacy class.

Remark 2.9. In the code associated to this article [AFV] we provide functions which com-

pute and label the transitive subgroups of W2d which contain complex conjugation in the file

src/W2d-subgroups.m. Our labelling convention is well defined and essentially follows lexico-

graphic ordering of the subgroups of the symmetric group S2d ⊃ W2d (as described in [HL03]). See

the file src/subgroup-labelling.m.

3. The weighted permutation representation

In this section we introduce a key tool in this paper – the notion of a weighted permutation repre-

sentation. This construction is heavily inspired by the definition of Newton hyperpane arrangement

of Dupuy, Kedlaya, and Zureick-Brown [DKZ24].
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3.1. The weighted permutation representation. We now describe the weighted permutation

representation associated to an abelian variety, which is the central isogeny invariant in this article.

It determines the Galois group, angle rank, and Newton polygon. The main purpose of our paper

is to determine which weighted permutation representations occur from low dimensional abelian

varieties. The weighted permutation representation is a reinterpretation of the Newton hyperplane

representation discussed in [DKZ24].

Definition 3.1 (Weighted permutation representations). Given a finite group G, a weighted permu-

tation representation of G is a pair (w, ρ), where w : X2d → Q≥0 is a map of sets and ρ : G ↪−→ W2d

is an inclusion of groups.

We say that a pair of weighted permutation representations (w, ρ) and (w, ρ′) of G are w-

conjugate if they are conjugate by an element of Stab(w), i.e., if there exists an element σ ∈ W2d

such that w = w ◦ σ and ρ′ = σ−1ρ(g)σ for all g ∈ G.

Definition 3.2 (Roots). Recall that for an abelian variety A we write RA for the set of roots of

hA(T ) without multiplicity. We define RA to be the multiset of roots of hA(T ), that is:

(1) When hA(T ) is totally complex, RA = RA.

(2) When hA(T ) has a real root α, it is counted with multiplicity two, and its duplicate is denoted

by α.

We define dA = #RA/2.

Definition 3.3 (Indexing and weighting). An indexing of roots of hA(T ) is a bijection I : X2d → RA

which satisfies the following conditions:

(1) I respects complex conjugation, i.e., I(k) = I(k) for each 1 ≤ k ≤ d, and

(2) the indices climb the Newton polygon, i.e.,

ν(αi) ≤ ν(αj) ≤ ν(αj) ≤ ν(αi)

for each pair of indices 1 ≤ i ≤ j ≤ d.

Any indexing of the roots naturally gives a weighting wA : X2d → Q≥0 given by k 7→ ν(αk) and

k̄ 7→ ν(αk) for k ∈ {1, . . . , d}. We omit the choice of indexing from the notation, since every choice

of indexing yields the same weighting wA. Note that the weighting wA associated to an abelian

variety A is uniquely determined by the q-Newton polygon of A.

Definition 3.4 (Weighted permutation representation, totally complex case). Suppose hA(T ) is

totally complex. Given an indexing I, we obtain representation

ρI : GA ↪−→ Sym(X2d) ∼= S2d

whose image lies in W2d. The pair (wA, ρI) is the weighted permutation representation associated

to A with respect to the indexing I.

The definition above canonically defines the weighted permutation representation associated to

A up to wA-conjugacy when PA(T ) is totally complex. The following definition gives a notion of
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weighted permutation representation when PA(T ) is totally real; although the definition does not

appear canonical, we will show later that it is in fact unique up to isomorphism.

The simple isogeny classes of abelian varieties with real eigenvalues are highly constrained.

Lemma 3.5 ([Wat69, pp. 528]). Let A be a simple abelian variety whose Frobenius eigenvalues are

real, then:

(1) If q is a square, A is a supersingular elliptic curve, and either hA(T ) = (T ±√
q) for some

choice of sign, or

(2) If q is not a square, A is a supersingular abelian surface, and hA(T ) = (T 2 − q).

Moreover, in case (1) we have RA =
{√

q,
√
q
}
or

{
−√

q,−√
q
}
, and in case (2) we have RA ={√

q,
√
q,−√

q,−√
q
}
.

Definition 3.6 (Weighted permutation representation, totally real case). Suppose that A has only

real Frobenius eigenvalues.

(1a) If q is a square and A has one eigenvalue, then GA is trivial. Define ρI : GA → W2 to be the

trivial map for all indexings.

(1b) If q is a square and A has two eigenvalues, then GA is trivial. Define ρI : GA → W4 to be

the trivial map for all indexings.

(2) If q is not a square, then GA
∼= C2. Define ρI : GA → W4 to be the homomorphism sending

the nontrivial element on GA to (12)(1̄2̄) for all indexings.

The pair (wA, ρI) is the weighted permutation representation associated to A with respect to the

indexing I.

We now define the weighted permutation representation associated to an abelian variety A for

which hA(T ) need not be totally real or totally complex; it is essentially the direct sum of its totally

real and totally complex parts. In this case A is isogenous to a product B × C where hB(T ) is

totally real and hC(T ) is totally complex. Let (wB, ρB) and (wC , ρC) be the weighted permutation

representations corresponding to the factors B and C respectively. Let (wB ⊕wC , ρB ⊕ ρC) be the

direct sum of these weighted permutation representations; conjugate by W2d so that the weight

function is nondecreasing, i.e., so that

w(i) ≤ w(j) ≤ w(j̄) ≤ w(̄i)

for i ≤ j. We define the weighted permutation representation associated to A to be the resulting

weighted permutation representation. Lemma 3.7 follows by construction.

Lemma 3.7. The weighted permutation representation associated to an abelian variety A is well

defined up to wA-conjugacy (irrespective of indexing). In particular, its image in W2d is a subgroup

GA which is well-defined up to wA-conjugacy.

3.2. The angle rank. It turns out that the angle rank can be computed from the weighted

permutation representation of an abelian variety in the following way.
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Definition 3.8. Given a weighted permutation representation (w, ρ : G ↪−→ W2d), define the angle

rank of (w, ρ) to be rk(M)−1 where M is the (d×|G|)-matrix whose ith-column has entries w(σ(i))

where σ ranges over elements of G.

The angle rank of (w, ρ) is equal to the rank of the (d×|G|)-matrix whose ith-column has entries

w(σ(i)) − w(σ(̄i)), which is referred to as the Newton hyperplane matrix [DKZ24, Remark 3.4].

We show in Lemma 3.11 that the angle rank of an abelian variety is equal to the angle rank of its

weighted permutation.

Example 3.9. Continuing with Example 2.8, fix a prime p of the splitting field K = Q(ζ9) above

p = 19, and let ν be the extension of the 19-adic valuation of Q extended to K. An indexing of

the roots RA according to Definition 3.3 is for example

(3.1) α1 = α, α2 = β, α3 = η, α4 = γ,

if we ensure that ν(α) = ν(β) = ν(γ) = ν(η) = 0. With this indexing, the weighted permutation

representation ρ : Gal(Q(ζ9)/Q) → W8 has image H = ⟨h⟩, where h = (12̄4̄1̄24)(33̄). With respect

to this indexing, the multiplicative relation in Equation (2.1) becomes

(3.2) α3 =
α1α2α4

19
=

α1α2

α4
.

One can find this multiplicative relation by considering the Newton hyperplane matrix of this

weighted permutation representation, and computing its kernel. By direct calculation we see that

the rank of the Newton hyperplane matrix (which is equal to δA) is three.

3.3. The divisor map. Many of the proofs in this paper make use of the same key idea, which

we elucidate here. Given a simple totally complex g-dimensional abelian variety A with Galois

group GA, we may construct the following. Let L be the Galois closure of the field K, i.e., the field

generated by the roots of PA(T ). Let PL be the set of primes in L above p. Let Q⟨RA⟩ denote the

Q-vector space of dimension 2d whose basis consists of the formal symbols [α] where α ranges over

the set of Frobenius eigenvalues.

Let DivQ(OL) be the free Q-module supported on the prime ideals of OL and let divA : OL →
DivQ(OL) be the map sending each element x ∈ OL to

∑
p app where (x) =

∏
p p

ap is the prime

factorization of the ideal generated by x. By abuse of notation we write

divA : Q⟨RA⟩ → Q⟨PL⟩

for the Q-linear map given by linearly extending divA on the roots α ∈ RA.

Note that Q⟨RA⟩ naturally inherits the structure of a GA-module from the action of GA on

RA, and similarly Q⟨PL⟩ has an action of GA inherited from the action of GA on PL. The map

divA is GA-equivariant. Note that divA determines the permutation representation, and thus also

determines the angle rank, Newton polygon, and Galois group.

It is natural to ask which GA-module homomorphisms are permissible as the divisor map of

a simple abelian variety. We list some necessary conditions which follow immediately from the

construction.

Proposition 3.10. Let A be a simple abelian variety with no real Frobenius eigenvalues. Then:
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(1) divA([α] + [α]) = divA(q) for all α ∈ RA;

(2) the GA-action on RA is transitive;

(3) the GA-action on PL is transitive; and

(4) if the Newton polygon has a segment of length m which contains exactly two lattice points,

then #PL | 1
m#GA.

We now quickly use the divisor map to show the following lemma.

Lemma 3.11. The angle rank δA of an abelian variety is equal to the angle rank of its weighted

permutation representation. Moreover, δA = rk(divA)− 1.

Proof. Consider the subspace Vp = span(divA(p)) ⊂ Q⟨PL⟩. We first claim that the angle rank of

an abelian variety is precisely the rank of the linear map Q⟨RA⟩ → Q⟨PL⟩/Vp induced by divA.

Clearly a multiplicative relation between the Frobenius eigenvalues gives rise to an element in the

kernel of this map. Conversely, given an element
∑2g

i=1 kiαi in the kernel, we have(∏
i

αki
i

)
= (q)

∑
ki/2,

so there exists u ∈ O×
L such that ∏

i

q−ki/2αki
i = u.

Because u has length 1 in all complex embeddings, u is a root of unity. Now observe that the

rank of Q⟨RA⟩ → Q⟨PL⟩/Vp is precisely one less than the rank of divA : Q⟨RA⟩ → Q⟨PL⟩. After

removing duplicate rows and columns, the matrix representing the latter is precisely the matrix

given in the definition of the angle rank of a weighted permutation representation. □

Observe that every such map Q⟨X2d⟩ → Qℓ satisfying the properties above gives rise to a

weighted permutation representation. To prove that a certain weighted representation cannot

occur, it suffices to show that there does not exist a lift Q2d → Qℓ satisfying the conditions above.

4. Warm-up: elliptic curves

We begin with the case when A is an elliptic curve. In accordance with the labelling convention

described in Section 2.5 we write W2.2.t.a.1 and C1.2.t.a.1 for the subgroups of order 2 and 1

of W2. The following proposition is immediate.

Proposition 4.1. Let A be an elliptic curve. Then the image, GA, of the weighted permutation

representation associated to A is equal to W2 except when q is a square and PA(T ) = (T ±√
q)2, in

which case A is supersingular and GA = {id}. More precisely, the possible combinations of Galois

group, Newton polygon, and angle rank that occur are displayed in Tables 4.1 and 4.2.
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wA-conjugacy class Angle rank Occurs Example(s)

W2.2.t.a.1 1 Yes 1.2.ab

C1.2.nt.a.1 0 No

Table 4.1. The wA-conjugacy classes of subgroups G ⊂ W2 which occur as the
image of the weighted permutation representation associated to an ordinary elliptic
curve.

wA-conjugacy class Angle rank Occurs Example(s)

W2.2.t.a.1 0 Yes 1.2.ac

C1.2.nt.a.1 0 Yes 1.4.ae

Table 4.2. The wA-conjugacy classes of subgroups G ⊂ W2 which occur as the
image of the weighted permutation representation associated to a supersingular el-
liptic curve.

5. Abelian surfaces

In this section we prove the following theorem.

Theorem 5.1. Let A be an abelian surface.

• Permutation representations in W4: If A has permutation representation contained in

W4, then the possible images GA of the weighted permutation representation associated to

A are given in Tables A.2 and A.5 when A is ordinary, in Tables A.3 and A.6 when A

is almost ordinary, and in Tables A.4 and A.7 when A is supersingular. The permutation

representation determines whether A is geometrically simple; this information can be seen in

the tables as well.

• Permutation representations in W2 when A is simple: If A has a permutation repre-

sentation contained in W2 and is simple, then A is supersingular and hence the angle rank

is 0. Both trivial Galois group and Galois group C2 occur. A is not geometrically simple.

• Permutation representations in W2 when A is not simple: Now suppose A has a

permutation representation contained in W2 and is not simple. Then A is isogenous (over

Fq) to E2 for some elliptic curve E then the weighted permutation representation associated

to A takes values in W2, and its image is equal to that associated to E (and classified in

Proposition 4.1).

The rest of the section is dedicated to proving Theorem 5.1. The third point follows from the

definition and the section on elliptic curves. The second point follows from the classification given

in [Xin94]; see also [MN02, Theorem 2.9 (SS2)]. In the remainder of this section we assume A has

permutation representation contained in W4.

5.1. Permutation representations of subgroups of W4. The group W4 is isomorphic to D4,

the dihedral group of order 8. The following lemma classifies the w-conjugacy classes of subgroups

of W4.
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Lemma 5.2. There are exactly 3 transitive and 7 intransitive subgroups of W4 and each is recorded

in Table A.1. Moreover, the only distinct subgroups which are wA-conjugate are:

(1) C2.4.nt.b.1 and C2.4.nt.b.2 when A is either ordinary or supersingular, and

(2) C2.4.nt.c.1 and C2.4.nt.c.2 when A is supersingular.

Each wA-conjugacy class gives rise to an isomorphism class of permutation representation, and the

angle ranks of these wA-conjugacy classes G ⊂ W4 are recorded in Tables A.2–A.7.

Proof. The first claim then follows by a direct calculation. The angle ranks are computed using our

implementation of Lemma 3.11 in the file src/weighted-perm-rep.m of our GitHub repository

[AFV]. □

To prove Theorem 5.1 it suffices to show that:

(1) the cases we claim do not occur, actually do not occur; and

(2) in the cases that do occur, the permutation representation determines whether the abelian

surface is geometrically simple.

In the remaining cases, we provide an example in Tables A.2–A.7, which realizes the given per-

mutation representation. We remark that the angle ranks displayed in the LMFDB are numerical

approximations, but we verify these examples explicitly via a slower (but deterministic) algorithm;

see the file tables/verify-angle-rank.m in our GitHub repository [AFV].

5.2. Proof of Theorem 5.1 in the simple case. For a simple abelian surface, the permutation

representation acts transitively except when A is supersingular with real Frobenius eigenvalues.

5.2.1. The ordinary case. In this case, every possible transitive permutation representation occurs.

Therefore, to prove the theorem in this case, it suffices to show that a simple ordinary abelian

surface is not geometrically simple if and only if its permutation representation is V4.4.t.a.1.

Proposition 5.3. A simple abelian variety has a unique simple factor over every finite extension

of the base field. In particular, if A is simple of prime dimension and it splits over a finite extension

of Fq, then it does so as the power of an elliptic curve.

Proof. This follows immediately from [CCO14, Proposition 1.2.6.1]. □

Corollary 5.4. If A is a simple abelian variety of prime dimension which is not geometrically

simple and not supersingular, then A is ordinary and has angle rank 1.

Proof. Since A is simple but not geometrically simple by Proposition 5.3 there exists an extension

Fqk of Fq over which A becomes isogenous to Eg for some ordinary elliptic curve E/Fqk (in

particular A is ordinary). Angle rank is invariant under base change, so it follows that δA = 1. □

Lemma 5.5. An ordinary geometrically simple abelian surface A has angle rank 2.

Proof. We prove the contrapositive. Assume that δA < 2. This implies that there exists a mul-

tiplicative relation among the normalized Frobenius eigenvalues ur11 ur22 = 1. Note that r1r2 = 0

implies that some ui is a root of unity, which would imply that A is not ordinary. Thus, we have

that both r1 and r2 are nonzero integers. Let α1 and α2 be the two Frobenius eigenvalues with
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ν(α1) = ν(α2) = 0. From the multiplicative relation we deduce that r1 = −r2, so that (u1/u2)
r1 = 1

and α2 = ζkα1 where ζk is a kth root of unity. The Frobenius eigenvalues of the base change of

A to Fqk are precisely the k-th powers of the Frobenius eigenvalues of A. Because αk
1 = αk

2 , the

Honda–Tate theorem implies that the base change of A to Fqk is isogenous to the square of an

elliptic curve, so A is not geometrically simple. □

Lemma 5.6. Let A be a simple ordinary abelian surface. Then, exactly one of the following

conditions holds.

(1) A is geometrically simple and GA
∼= C4 or W4.

(2) A is not geometrically simple and GA
∼= V4.

Proof. By Lemma 5.5 if A is geometrically simple then A has angle rank 2, and by Corollary 5.4

if A is not geometrically simple the it has angle rank 1. The claim follows from the angle ranks

computed in Lemma 5.2 (and recorded in Table A.2). □

5.2.2. The almost ordinary case. Every simple almost ordinary abelian surface is geometrically

simple by Corollary 5.4, so the following lemma completes the proof.

Lemma 5.7. A simple almost ordinary abelian surface has Galois group W4.

Proof. Suppose for the sake of contradiction that A is an almost ordinary abelian variety with

Galois group C4 or V4. Let divA be the corresponding divisor map as discussed in Proposition 3.10.

By point (4), we have #PL | 2, where PL is the set of primes above p in L. From Lemma 3.11, we

have δA = rk(divA)− 1 ≤ #PL − 1, which contradicts Table A.3. □

Remark 5.8. One can also see Lemma 5.7 as follows: by the theory of Newton polygons and the

Honda–Tate theorem, PA(T ) has an irreducible linear and quadratic factor over Qp, so the quartic

extension K/Q is not Galois.

5.2.3. The supersingular case. It follows from the Honda–Tate theorem that every supersingular

abelian variety is geometrically isogenous to the power of an elliptic curve. The proof is concluded

with the following well known result which shows that no supersingular abelian variety of dimension

g > 1 can have Galois group W2g.

Lemma 5.9. Suppose A has Galois group GA
∼= W2d. Then either:

(1) A is a power of a supersingular elliptic curve E with PE(T ) ̸= (T ±√
q)2, or

(2) A has angle rank δA = d.

Proof. Suppose that A is not supersingular. Then, every normalized Frobenius eigenvalue u = α/
√
q

satisfies ν(u) ̸= 0. Fix an indexing I : X2d → RA and consider the vector v := (v1, . . . , vd) with

nonzero entries vj := ν(uj). Acting on v by the transpositions (kk̄) ∈ W2d, we see that the Newton

hyperplane matrix contains the (d× d)-minor
v1 v1 · · · v1

v2 −v2 · · · v2
...

...
. . .

...

vd vd · · · −vd

 ,

14



which is visibly similar to the diagonal matrix diag(v1, . . . , vd). □

5.3. Proof of Theorem 5.1 in the nonsimple case. If A is isogenous to the square of an

elliptic curve, then the claim follows immediately from Proposition 4.1. Therefore suppose that A

is isogenous over Fq to a product E1 × E2 of non-isogenous elliptic curves. Note that when A is

supersingular, there is nothing to show so it suffices to consider the ordinary and almost ordinary

cases. Let αi and αi be the Frobenius eigenvalues of Ei for each i = 1, 2.

5.3.1. Nonsimple ordinary abelian surfaces. In this case, both E1 and E2 are ordinary elliptic curves

and the Frobenius eigenvalues αi, αi are not real, and therefore GA contains complex conjugation.

It is now easy to see that the Galois group is V4.4.nt.a.1 if Q(α1) ̸= Q(α2) and C2.4.nt.a.1

otherwise.

Remark 5.10. In fact, using Lemma 5.3 of [KS00], it is possible to show that in this case, the two

elliptic curves are geometrically isogeneous if and only if the Galois group is C2.4.nt.a.1, but we

will not need this.

5.3.2. Nonsimple almost ordinary abelian surfaces. In this case we may assume without loss of

generality that E1 is ordinary and E2 is supersingular. First note that GA cannot be the wA-

conjugate to C2.4.nt.b.1 or C1.4.nt.a.1 since in this case the Frobenius eigenvalues of E1 are

fixed by GA, which cannot occur.

Lemma 5.11. Let E1 and E2 be elliptic curves over Fq. Suppose that E1 is ordinary and E2 is

supersingular. Then, the corresponding number fields satisfy K1 ∩K2 = Q.

Proof. If K2 = Q there is nothing to show. Suppose that this is not the case, and assume in search

of a contradiction that K1 = K2 = K. Then α1 = uα2 for u ∈ K of absolute value 1. Note that

u can’t be a root of unity, since that would imply that α1 is a supersingular q-Weil number. Since

α2 is a supersingular q-Weil number, some power of u is an algebraic integer. This implies that u

is also an algebraic integer which has length 1 in all complex embeddings, and thus u ∈ O×
K . But

K is quadratic imaginary, implying that u is a root of unity, a contradiction. □

6. Abelian threefolds

Theorem 6.1. Let A be a simple abelian threefold.

• Permutation representations in W6. If A has permutation representation contained

in W6, then the possible images of the weighted permutation representation associated to a

simple abelian threefold is given in Tables A.8–A.12. Each table corresponds to one Newton

polygon. The permutation representation determines whether A is geometrically simple or

not, and this information can be found in the tables.

• Permutation representations in W2. If the permutation representation of A is not con-

tained in W6, then it is contained in W2. In this case eA = 1, where eA is as in the statement

of the Honda Tate–theorem. Such abelian varieties have Galois group C2, angle rank 1, and

Newton polygon type (D). They are geometrically simple.
15



The second point follows from [Xin94]; see [ABS24, Theorem 6.1.1, Lemma 6.1.2] for more detail.

In the remainder of this section we assume all abelian threefolds in question are simple and have

permutation representation contained in W6. We first classify the permutation representations

that occur, and then in Section 6.7 classify whether permutation representations that occur are

geometrically simple or not. The rest of this section is dedicated to proving Theorem 6.1.

6.1. Signed permutations on three elements. The following lemma follows by a direct calcu-

lation in Magma. See the file src/W2d-subgroups.m in our GitHub repository [AFV].

Lemma 6.2. There are exactly 10 transitive subgroups in W6 which contain the complex conjugation

element ι ∈ W6, and each is listed in Table A.1. These 10 subgroups are contained in exactly 4

W6-conjugacy classes, namely those of:

(1) W6,

(2) C2 ≀ C3 (transitive label 6T6) generated by (123)(1̄2̄3̄), (11̄), (22̄), and (33̄),

(3) D6 generated by (123)(1̄2̄3̄) and (12)(1̄2̄),

(4) C6 generated by (1231̄2̄3̄).

Moreover, for each possible Newton polygon of an abelian threefold A, the wA-conjugacy classes of

transitive subgroups of W6 are recorded in Tables A.8–A.12.

Similarly to the case of surfaces, to prove Theorem 6.1 it suffices to show that:

(1) the cases we claim do not occur, actually do not occur; and

(2) in the cases that do occur, the permutation representation determines whether the abelian

surface is geometrically simple (this is in Section 6.7).

In the remaining cases, we provide an example in Tables A.8–A.12 which realizes the given permu-

tation representation. We now prove (1).

6.2. Proof of Theorem 6.1 in the ordinary case. In this case, the table shows that every

possible permutation representation occurs, so there is nothing to prove.

6.3. Proof of Theorem 6.1 in the almost ordinary case. We first classify permutation rep-

resentations that occur, and then give proofs of geometric simplicity. The following two lemmas

complete the classification of permutation representations in the case of simple almost ordinary

abelian threefolds.

Lemma 6.3. An almost ordinary abelian threefold cannot have Galois group C6.

Proof. Suppose for the sake of contradiction that A is an almost ordinary abelian threefold with

Galois group GA
∼= C6. Note that all permutation representations of C6 are conjugate in the

almost ordinary case, so it suffices to show that the image of the permutation representation is not

conjugate to C6.6.t.a.2, which is generated by σ = (1231̄2̄3̄). We now show that this permutation

representation doesn’t lift to a divisor map with the properties listed in Proposition 3.10.

By Proposition 3.10(4), we have #PL | 3 where PL is the set of primes of K = L dividing p. But

then the action of GA on PL factors through C3 and in particular the sequence

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
0, 0, 12 , 1, 1,

1
2

)
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should be 3-periodic, a contradiction. □

Lemma 6.4. An almost ordinary abelian threefold with Galois group D6 has angle rank 2.

Proof. From Table A.9, it suffices to show that the permutation representation D6.6.t.a.1, which

has angle rank 3, does not occur. Suppose for the sake of contradiction that A is an almost

ordinary abelian threefold with permutation representation D6.6.t.a.1. We exhibit a nontrivial

multiplicative relation between the Frobenius eigenvalues (a contradiction to the angle rank being

maximal) – in particular we show that α1α3/q is a root of unity.

Claim 1: #PL = 6.

By Proposition 3.10(4), we have #PL | 6. The order 6 cyclic subgroup of D6.6.t.a.1 is generated

by σ = (12̄31̄23̄). As in the proof of Lemma 6.4, because the sequence

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
0, 1, 12 , 1, 0,

1
2

)
is not periodic, we must have #PL = 6.

Claim 2: α1α3/q is a root of unity.

Let p1 be the prime of OL corresponding to the valuation ν and let

(p1, p2, p3, p1, p2, p3) = (p1, σ(p1), . . . , σ
5(p1)).

Because D6 has a unique transitive permutation representation on a 6 element set, the action of

D6 on PL is exactly the rigid symmetries of the hexagon as depicted in Figure 6.1. Because

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
0, 1, 12 , 1, 0,

1
2

)
,

we have

divA(α1) = en
(
[p3] +

1
2 [p2] + [p1] +

1
2 [p2]

)
where q = pn and e is the ramification index of p in L. Now consider the element τ = (13̄)(22̄)(1̄3) ∈
D6.6.t.a.1 depicted in Figure 6.1. Note that τ is not complex conjugation and in fact τ(α1) = α3.

The action of D6 on PL allows us to compute divA(α3), and it is:

divA(α3) = τ(divA(α1)) = en
(
[p1] +

1
2 [q2] + [p3] +

1
2 [p2]

)
.

We have (α3α1)OL = qOL, so α3α1 = qu for some unit u ∈ O×
L . Because α1 and α3 are both q-Weil

numbers, the unit u = α1α3/q has absolute value 1 over all complex places, thus it is a root of

unity. □
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p1

p3
p2

p1

p3

p2

Figure 6.1. The action of GA on PL. The permutation τ ∈ GA is reflection with
respect to the dotted line.

6.4. Proof of Theorem 6.1 in the Newton polygon (C) case. The following lemma completes

the proof.

Lemma 6.5. An abelian threefold with Newton polygon (C) cannot have Galois group GA
∼= C6.

Proof. Suppose for the sake of contradiction that A is an abelian threefold with Galois group GA
∼=

C6 and Newton polygon (C). It suffices to show that the image of the permutation representation

is not conjugate to C6.6.t.a.2, which is generated by σ = (1231̄2̄3̄).

By Proposition 3.10(4), we have #PL | 3. But then the action of GA on PL factors through C3

and in particular the sequence

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
0, 12 ,

1
2 , 1,

1
2 ,

1
2

)
should be 3-periodic, a contradiction. □

6.5. Proof of Theorem 6.1 in the Newton polygon (D) case. The following lemmas complete

the proof.

Lemma 6.6. A type (D) abelian threefold cannot have permutation representation whose image is

wA-conjugate to C6.6.t.a.2.

Proof. Suppose for the sake of contradiction that A is a type (D) abelian threefold with permutation

representation C6.6.t.a.2. By Proposition 3.10(4), we have #PL | 2 where PL is the set of primes

of K = L dividing p. But then the action of GA on PL factors through C2 and in particular the

sequence

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
should be 2-periodic, a contradiction. □

Lemma 6.7. A type (D) abelian threefold cannot have permutation representation whose image is

wA-conjugate to D6.6.t.a.4.

Proof. Suppose for the sake of contradiction that A is a type (D) abelian threefold with permutation

representation D6.6.t.a.4. By Proposition 3.10(4), we have #PL | 4. However D6.6.t.a.4

contains the cyclic subgroup generated by σ = (1231̄2̄3̄). But

(ν(α1), ν(σα1), ..., ν(σ
5α1)) =

(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
is not periodic, so the action of C6 on PL is faithful and therefore #PL ≥ 6, a contradiction. □
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6.6. Proof of Theorem 6.1 in the supersingular case.

Lemma 6.8. The sextic field generated by the Frobenius eigenvalues of a simple supersingular

abelian threefold must be Q(ζ7) or Q(ζ9), both of which have Galois group C6.

Proof. We follow the argument in [NR08, Proposition 2.1] (note that the characteristic of the base

field in loc. cit. is 2). Supersingular abelian varieties have angle rank 0, so the sextic field K (as

defined in Definition 2.7) is of the form K ∼= Q(ζm
√
q) where ζm is a primitive mth-root of unity.

Choose m to be the smallest integer such that ζm
√
q generates K.

If q is a square, then the only cyclotomic fields of degree 6 are Q(ζ7) or Q(ζ9), so we are done.

Suppose now that q is not a square. If m is odd then K contains the field Q(ζm). Thus

[Q(ζm) : Q] ≤ 6 and m = 3, 7, 9. If m = 3 then [K : Q] ≤ [Q(ζ3,
√
q) : Q] = 4. If m = 7, 9, then

6 = [K : Q] ≥ [Q(ζm) : Q] = 6, so K = Q(ζm).

Now suppose m = 2n is even. Since K contains Q(ζ2m) = Q(ζn) and in particular we have

n = 3, 4, 6, 7, 9, 14. If n = 7, 9, 14 then 6 = [K : Q] ≥ [Q(ζn) : Q] = 6, so K = Q(ζn). If n = 3,

then [K : Q] ≤ [Q(ζ6,
√
q) : Q] = 4, contradiction. If n = 6, then K = Q(ζ12

√
q). However, this is

a quadratic extension of the quadratic field Q(ζ6), so [K : Q] = 4, which is a contradiction. □

6.7. When are simple abelian threefolds geometrically simple? By the Honda–Tate theo-

rem every supersingular abelian variety is not geometrically simple. Moreover, by Corollary 5.4 a

simple ordinary threefold which is neither supersingular nor geometrically simple must be ordinary.

Suppose that A is a simple ordinary abelian threefold. In this case all possible permutation

representations occur, and it suffices to show that if A is geometrically simple if it has angle rank

3 and not geometrically simple if it has angle rank 1.

Lemma 6.9. Let A be a simple ordinary abelian threefold. Then the angle rank of A is 3 if A is

geometrically simple and 1 otherwise.

Proof. If A is geometrically simple, then δA = 3 by [ABS24, Lemma 6.2.2]. If A is not geometrically

simple then A has angle rank 1 by Corollary 5.4. □

7. Inverse Galois Problems

We state a slight refinement of a conjecture Dupuy, Kedlaya, Roe, and Vincent [DKRV21a,

Conjecture 2.7].

Conjecture 7.1 (Refined inverse Galois problem for abelian varieties). Fix a prime number p and

let G ⊂ W2d be a transitive subgroup containing the complex conjugation element. Then:

(1) there exists an integer r ≥ 1 and a simple abelian variety A/Fpr of dimension d such that

G is wA-conjugate to the image of the weighted permutation representation associated to A,

and

(2) the abelian variety A may be taken to be ordinary.

In particular, G is isomorphic to the Galois group of some abelian variety A.

We note that Conjecture 7.1 is a very strong statement. In particular it implies the inverse

Galois problem holds even when we are restricted to totally real fields.
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Proposition 7.2. Assume Conjecture 7.1, then the inverse Galois problem holds for totally real

fields. More precisely, let d ≥ 1 and let G ⊂ Sd be a transitive subgroup, then G is the Galois group

of a polynomial P+(T ) of degree d over Q and moreover the splitting field of P+(T ) may be taken

to be totally real.

Proof. Let G ⊂ Sd be a transitive subgroup, and consider the group G̃ = C2 ≀G equipped with its

natural embedding G̃ ↪→ W2d. But G̃ is a transitive subgroup of W2d which contains the complex

conjugation element, so by assumption it occurs as the Galois group of a q-Weil polynomial PA(T ).

Let P+
A (T ) be the trace polynomial of PA(T ) defined by the equation

P+
A (T ) =

∏
α

(T − (α+ α)),

where α ranges over the roots of PA(T ). It follows by construction that Gal(P+
A (T )) is isomorphic

to G and that every root of P+
A (T ) is real. □

Appendix A. Tables

In Table A.1 we record our labelling convention for subgroups of W4 and W6. In particular, we

list every subgroup of W4 and every transitive subgroup of W6 containing complex conjugation.

A.1. Abelian surfaces. Tables A.2–A.7 record the possible subgroups G ⊂ W4 which may oc-

cur as the (wA-conjugacy class of the) images of weighted permutation representations associ-

ated to abelian surfaces A. For each case which does occur, we provide an example from the

LMFDB [LMF24]. The tables are separated by Newton polygon (according to the conventions in

Figure 1.1) and by whether A is simple.

A.1.1. Simple abelian surfaces. These cases are treated in Tables A.2–A.4. We do not list in-

transitive subgroups which do not occur as the image of the weighted permutation representation

associated to a simple abelian surface – note that an intransitive subgroup can only occur for

the supersingular abelian surface in Lemma 3.5(2). In each case we record whether every isogeny

class of abelian surfaces with the recorded image of the weighted permutation representation is

geometrically simple.

A.1.2. Non-simple abelian surfaces. These cases are treated in Tables A.5–A.7. Since transitive

subgroups of W4 cannot occur as the image of the weighted permutation representation associated

to an abelian surface, we do not record them.

A.2. Abelian threefolds. Tables A.8–A.12 record the possible subgroups G ⊂ W6 which may

occur as the (wA-conjugacy class of the) images of weighted permutation representations associated

to simple abelian threefolds A. For each case which does occur, we provide an example from the

LMFDB [LMF24]. The tables are separated by Newton polygon (according to the conventions in

Figure 1.3).
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Label of G Generators of G Label of G Generators of G

W4.4.t.a.1 W4 W6.6.t.a.1 W6

V4.4.t.a.1 ι, (12)(1̄2̄) 6T6.6.t.a.1 (123)(1̄2̄3̄), (11̄), (22̄), (33̄)

C4.4.t.a.1 (121̄2̄) D6.6.t.a.1 (12̄31̄23̄), (23)(2̄3̄)

V4.4.nt.a.1 (11̄), (22̄) D6.6.t.a.2 (123̄1̄2̄3), (23)(2̄3̄)

C2.4.nt.a.1 ι D6.6.t.a.3 (12̄3̄1̄23), (23̄)(2̄3)

C2.4.nt.b.1 (11̄) D6.6.t.a.4 (1231̄2̄3̄), (23̄)(2̄3)

C2.4.nt.b.2 (22̄) C6.6.t.a.1 (12̄31̄23̄)

C2.4.nt.c.1 (12)(1̄2̄) C6.6.t.a.2 (1231̄2̄3̄)

C2.4.nt.c.2 (12̄)(1̄2) C6.6.t.a.3 (13̄1̄2̄3)

C1.4.nt.a.1 id C6.6.t.a.4 (12̄3̄1̄23)

Table A.1. Labels for subgroups of W4 (left) and subgroups of W6 (right).

wA-conjugacy class Angle rank Occurs Geometrically simple Example(s)

W4.4.t.a.1 2 Yes Yes 2.2.ac_d

V4.4.t.a.1 1 Yes No 2.2.ad_f

C4.4.t.a.1 2 Yes Yes 2.3.ad_f

Table A.2. The images of the weighted permutation representations associated to
a simple ordinary abelian surface (Newton polygon (A) in Figure 1.1).

wA-conjugacy class Angle rank Occurs Geometrically simple Example(s)

W4.4.t.a.1 2 Yes Yes 2.2.ab_a

V4.4.t.a.1 2 No

C4.4.t.a.1 2 No

Table A.3. The images of the weighted permutation representations associated to
simple almost ordinary abelian surfaces (Newton polygon (B) in Figure 1.1).

wA-conjugacy class Angle rank Occurs Geometrically simple Example(s)

W4.4.t.a.1 2 No

V4.4.t.a.1 0 Yes No 2.2.ac_c

C4.4.t.a.1 0 Yes No 2.4.ac_e

C2.4.nt.c.1
0 Yes No 2.2.a_ae

C2.4.nt.c.2

Table A.4. The images of the weighted permutation representations associated to
simple supersingular abelian surfaces (Newton polygon (C) in Figure 1.1).
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wA-conjugacy class Angle rank Occurs Example(s)

V4.4.nt.a.1 1 Yes 2.3.ad_i

C2.4.nt.a.1 1 Yes 2.2.a_d

C2.4.nt.b.1
1 No

C2.4.nt.b.2

C2.4.nt.c.1 1 No

C2.4.nt.c.2 1 No

C1.4.nt.a.1 0 No

Table A.5. The images of the weighted permutation representations associated to
non-simple ordinary abelian surfaces (Newton polygon (A) in Figure 1.2).

wA-conjugacy class Angle rank Occurs Example(s)

V4.4.nt.a.1 1 Yes 2.2.ad_g

C2.4.nt.a.1 1 No

C2.4.nt.b.1 1 No

C2.4.nt.b.2 1 Yes 2.4.ah_u

C2.4.nt.c.1 1 No

C2.4.nt.c.2 1 No

C1.4.nt.a.1 0 No

Table A.6. The images of the weighted permutation representations associated to
a non-simple almost ordinary abelian surfaces (Newton polygon (B) in Figure 1.2).

wA-conjugacy class Angle rank Occurs Example(s)

V4.4.nt.a.1 0 Yes 2.2.ac_e

C2.4.nt.a.1 0 Yes 2.2.a_a

C2.4.nt.b.1
0 Yes 2.4.ag_q

C2.4.nt.b.2

C2.4.nt.c.1
0 No

C2.4.nt.c.2

C1.4.nt.a.1 0 Yes 2.4.a_ai

Table A.7. The images of the weighted permutation representations associated to
non-simple supersingular abelian surfaces (Newton polygon (C) in Figure 1.2).
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wA-conjugacy class Angle rank Occurs Geometrically simple Example(s)

W6.6.t.a.1 3 Yes Yes 3.2.ad_f_ah

6T6.6.t.a.1 3 Yes Yes 3.2.ad_g_aj

D6.6.t.a.1 1 Yes No 3.2.a_a_ad

D6.6.t.a.2

3 Yes Yes 3.2.ac_a_dD6.6.t.a.3

D6.6.t.a.4

C6.6.t.a.1 1 Yes No 3.2.ae_j_ap

C6.6.t.a.2

3 Yes Yes 3.7.ak_bw_afvC6.6.t.a.3

C6.6.t.a.4

Table A.8. The images of the weighted permutation representations associated to
simple ordinary abelian threefolds (Newton polygon (A) in Figure 1.3).

wA-conjugacy class Angle rank Occurs Geometrically simple Example

W6.6.t.a.1 3 Yes Yes 3.2.ab_ab_c

6T6.6.t.a.1 3 Yes Yes 3.4.ac_ab_g

D6.6.t.a.1
3 No

D6.6.t.a.3

D6.6.t.a.2
2 Yes Yes 3.2.ac_b_a

D6.6.t.a.4

C6.6.t.a.1
3 No

C6.6.t.a.4

C6.6.t.a.2
2 No

C6.6.t.a.3

Table A.9. The images of the weighted permutation representations associated to
simple almost ordinary abelian threefold (Newton polygon (B) in Figure 1.3).
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w-conjugacy class Angle rank Occurs Geometrically simple Example

W6.6.t.a.1 3 Yes Yes 3.2.ab_a_a

6T6.6.t.a.1 3 Yes Yes 3.4.ab_c_a

D6.6.t.a.1

3 Yes Yes 3.4.ab_a_ae
D6.6.t.a.2

D6.6.t.a.3

D6.6.t.a.4

C6.6.t.a.1

3 No
C6.6.t.a.2

C6.6.t.a.3

C6.6.t.a.4

Table A.10. The images of the weighted permutation representations associated
to a simple abelian threefolds with Newton polygon (C) in Figure 1.3.

w-conjugacy class Angle rank Occurs Geometrically simple Example

W6.6.t.a.1 3 Yes Yes 3.2.ac_c_ac

6T6.6.t.a.1 3 Yes Yes 3.3.ad_j_ap

D6.6.t.a.1 1 Yes Yes 3.2.a_a_ac

D6.6.t.a.2

3 NoD6.6.t.a.3

D6.6.t.a.4

C6.6.t.a.1 1 Yes Yes 3.7.a_a_abj

C6.6.t.a.2

3 NoC6.6.t.a.3

C6.6.t.a.4

Table A.11. The images of the weighted permutation representations associated
to simple abelian threefolds with Newton polygon (D) in Figure 1.3.
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w-conjugacy class Angle rank Occurs Geometrically simple Example

W6.6.t.a.1 0 No

6T6.6.t.a.1 0 No

D6.6.t.a.1

0 No
D6.6.t.a.2

D6.6.t.a.3

D6.6.t.a.4

C6.6.t.a.1

0 Yes No 3.3.a_a_aj
C6.6.t.a.2

C6.6.t.a.3

C6.6.t.a.4

Table A.12. The images of the weighted permutation representations associated
to simple almost ordinary abelian threefolds (Newton polygon (E) in Figure 1.3).
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